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Abstract - The objective of this work is to evaluate the efficiency of genomic selection 

(GS) of genome-enabled prediction by Radial Basis Function Neural Networks (RBFNN) 

in the prediction of genetic values considering dominance effects and diferent degrees of 

heritability. In addition, the results were compared with those obtained by G-BLUP. An F
1 

population with 500 individuals genotyped with 1000 SNP-type markers was simulated. 

The phenotypic traits were determined by adopting two different gene action models: 

additive and dominance admitting heritability levels (h2) 30 and 60%, each is controlled 

by 50 loci, considering two alleles per loco. The accuracy and the mean squared error 

root (MSER) were estimated using a five-fold cross-validation scheme. For the low 

heritability scenario, h2 = 0.3 in the additive scenario, the accuracy of validation was 31% 

for RBFNN, 58% for RR-BLUP, and in the complete dominance scenario the values 

were 28% e 25%, respectively. Additionally, when analyzing the MSER the difference 

in performance of the techniques is even greater. For additive scenario, the estimates 

were 97.33 RR-BLUP and 5.80 for RBFNN, in the most critical scenario, 91.31 GBLUP 

and 14.55 for RBFNN. Overall, a RBFNN shows accuracy lower than those obtained 

through G-BLUP. On the other hand, the RBFNN has low prediction bias. Finally, the 

adjustment of the GBLUP to dominance models despite increasing the complexity of 

the model also increased the predictive accuracy compared to the model without 

considering the dominance effect. 
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Introduction 

One of the main contributions of molecular 

genetics for the benefit of plant breeding is the 

possibility of using directly DNA information in the 

selection of individuals. Genomic Selection (GS) 

(Meuwissenet al., 2001) enabling to estimate the 

genomic value of individuals (GEBV) without the 

need of phenotyping reducing time and money 

(Crossa et al.,2017). 

For some species, as example maize, eucalyptus, 

cotton, rice and pinnus (Denis and Bouvet, 2011; Liu 

et al., 2012; Technow et al., 2012; Liang 2015; 

Almeida Filho et al., 2016), where there is 

commercial interest in hybrids and heterosis, the 

contribution of dominance presents high importance 

(Almeida Filho et al., 2016). The inclusion of these 

effects in GS models has been carried out by some 

authors (Azevedo et al., 2015; Almeida Filho et al., 

2016; Denis and Bouvet, 2011; Technow et al., 2012; 

Santos et al., 2016; Sant’Anna  et al.,  2019;  Viana 
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et al., 2017; Vitezica et al., 2017). Despite huge efforts 

in the development of statistical models for the 

implementation of GS with non-additive effects (as 

dominance), there are still some issues that have to be 

dealt with (Crossa et al., 2017). For example, either 

in the Bayesian or frequentist approaches it is 

necessary to define a priori the statistical model to be 

fit. On the other hand, methodologies based on 

Computational Intelligence (CI) allows to infer the 

trait architecture directly from the used data set. 

Therefore, differently from the Bayesian and 

frequentist methods there is no need to address 

assumptions about the trait architecture, distributions 

of data and residues (Haykin, 2009; Long et al., 2010; 

Gianola et al., 2011; Howards et al., 2014). Among 

several methodologies based on CI, Radial Basis 

Function Neural Networks (RBFNN) are a particular 

class of Neural Networks (NN) that presents attractive 

properties to GS. RBFNNs have the ability to learn 

from the data used in their training (Gianola et al., 

2011), presents universal approximation properties 

(González-Camacho et al., 2012), give a unique 

solution (Cruz and Nascimento, 2018) and are faster 

than standard NNs (González-Camacho et al., 2018). 

RBFNN has been successful used in GS (Long et al., 

2010, 2011; Pérez-Rodríguez et al., 2012; González- 

Camacho et al., 2012, 2016). In general, these studies 

concludes the application of RBFNN in GS demonst 

great potential for capturing complex interactions 

by recognizing the importance of the non-additive 

effects in training data and incorporating them into the 

predictions. However, they also recommend highly that 

the use of RBFNN needs further investigation to 

better understand the complexity of quantitative traits 

in order to obtain more accurate results. 

In light of expose, this paper aimed to evaluate 

the efficiency of genome-enabled prediction by 

RBFNN in the prediction of genetic values considering 

dominance effects and different degrees of 

heritability. The results were compared with those 

obtained by one of the standard GS model: G-BLUP. 

Materials and methods 

Origin of populations 

In order to assess the accuracy of GS 

predictions, data were simulated by considering a 

diploid species with 2n = 2x = 20 chromosomes as the 

reference, and the total length of the genome was 

stipulated in 1,000 cM. Genomes were generated with 

a saturation level of 101 molecular markers spaced by 

1 cM per linkage group, totaling 1010 markers. 

Divergent parental line genomes were simulated. The 

effective size of the base population is the size of F
1 

itself, since the base population (F
1
) was derived from 

two contrasting homozygous parents. 

Simulation of quantitative traits 

The genotypic value for the monogenic model 

is defined by u + a, u + d, u – a for the genotypes AA, 

Aa e aa, respectively. In a polygenic model, the total 

genotypic value expressed by a given individual 

belonging to the population was the sum of each 

additive effects of individual locus estimated by the 

following expression 
 

where the additive effect (a) of each locus is 

one half the difference in mean phenotype between 

the two homozygous genotypes (for each individual i). 

The dominance effect (d) is the difference between the 

mean phenotype of the heterozygous genotype and the 

average phenotype of the two homozygous genotypes. 

In our simulation we defined 50 loci to control the trait. 

Therefore, the additive effect is given by: 
 

With  being the effect of the favorable allele in 

locus j, considered equal to 1, 0 or -1 for the genotypic 

classes AA, Aa and aa, respectively, and pj  being the 

contribution of locus j to the manifestation of the trait 

under consideration. In this study, it was established as 

being equivalent to the probability of the set generated 

by the binomial distribution (a+b)s, where a = b = 0.5 

and s = 49. The value of di was defined according to 

the average degree of dominance expressed in each 

trait. The quantitative traits were simulated in three 

scenarios considering three degrees of dominance 

(d/a = 0, 0.5 and 1) and two broad sense heritability 

(h2 = 0.30 and 0.60), totaling six genetic architectures. 

The phenotypic values of the ith individuals were 

obtained according to the model: Pi= Gi+ Ei, where 

Giis the genetic effect given by the sum of the genetic 

effects in each locus, and E
i 
is the environmental effect, 

generated according to a normal distribution with means 

equal to zero and variance given by the equation bellow: 
 

 

where  2 is the variance given by the 

environmental values,  2 is the variance of the genetic 

values, and h2 is the heritability defined for the trait. The 

genetic variance is defined for each population from the 

information of the genetic control and the importance 

of each locus in the polygenic model. 
 

where a2, d2 were defined by the mean values 

of the effects associated with the homozygote and 

heterozygous genotypes for each one of the 50 loci, 

respectively. 
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In the additive model the phenotypic value of 

the ith individuals were obtained according to equation 

bellow: 
 

 
 

Where Y
i 
is the phenotypic value for individual 

(changed from 1 to 500 individuals),  is the general 
average, with j being the effect of the favorable allele 
in  locus  j,  considered  equal  to  1,  0  or  -1  for    the 

genotypic classes AA, Aa and aa, respectively, and p
j 

being the contribution of locus j to the manifestation 
of the trait under consideration, in this work as having 
binomial distribution. The value of di was established 

from the average degree of dominance manifested in 

each trait as part of the equation j  = ai  + di  e di/ai  

= (average degree of dominance), being  + aj,  + dj 
e  - aj for the genotypic classes AA, Aa and aa, 
respectively, where ai and di representing the 
deviation.  - 

Table 1. Simulated scenarios composed by combination of traits, action genenit model, heritabilty and dominance 

degree. 
 

Scenarios Heritability (%) Model Dominance 

V1 - D0H30_Ad 30 additive 0 

V2 - D0.5H30_Ado 30 additive-dominant 0.5 

V3 – D1H30_Ad0 30 additive-dominant 1 

V4 - D0H60_Ad 60 additive 0 

V5 - D0.5H60_Ado 60 additive-dominant 0.5 

V6 - D1H60_Ado 60 additive-dominant 1 

 

Genomic selection procedures 

The additive dominance model for the REML/G- 

BLUP method is given by Azevedo et al. (2019): 

where y is the vector of phenotypic observations, 

 

b is the vector of fixed effects, ua is the vector of 

random of additive marker effects, ud is the vector of 

random of dominance marker effects and e refers to 

the vector of random errors; The variance structure is 

given by ua~N(0, Gaσ
2
ua); ud~N(0, Gσ2

ud); by e~N(0, I 

σ2
e). 

An equivalent model at the marker level is given 

by 

 

where: ua = Wma; Var(Wma) = WIσ2
maW’ = WW’ 

σ2
ma; ud = Smd; Var(Smd) SIσ2

mdS’ σ2
ma; X and Z are 

metrices of incidence for the vectors additive (ma) 

and dominance (md) marker genetic effects. The 

variance components associated to these effects are 

σ2
ma; and σ2

md, respectively. Ga and Gd are the 

genomic relationship matrices for the additive and 

dominance effects. The quantity ma in one locus is 

the allele substitution effect and is given by ma = αi = 

ai + (qi – pi), where pi and qi are allelic frequencies 

and ai and di are the genotypic values for one 

homozygote and heterozygote, respectively, at locus 

i. In turn, the quantity md can be directly defined as 

mdi = di. The matrices W and S are defined based on 

the values 0, 1 and2 for the number of one of the 

alleles at the i marker locus in a diploid individual. 

The correct parameterization of W and 

S is as follows, according to the marker 

genotypes at a locus m. 

The covariance matrix for the additive 

effects is given by Gaσ
2
ma= Var(Wma) = WW’ 

σ2
ma, which leads to: 

 

 

 

 

 

The covariance matrix for the 

dominance effects is given by Gdσ
2
d = 

Var(Smd)SS’σ2 
md. Thus 

 

as 
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Radial Basis Function Neural Network (RBFNN) 

A RBFNN is an artificial neural network that 

uses radial basis functions as activation functions. The 

RBFNN in the present study is a three layered feed- 

forward neural network, where the first layer is linear 

and only distributes the input signal, while the next layer 

is nonlinear and uses Gaussian functions (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Structure of a radial basis function neural network (RBFNN). 
 

In the hidden layer, each input vector 

(xi1,…,xip) is summarized by the Euclidean distance 

between the input vectors xi and the centers cm, (m = 

1, ..., M) neurons, i.e., hm||xi – cm||, where hm  is a 

band width parameter. Then distances are 

transformed by the Gaussian kernel exp (-(hm||xi – 

cm||)2) for obtaining the response, 

(extracted from 

Gonzalez-Camacho et al., 2012). 

The training of RBFNN optimization includes: 

the weights between the hidden layer and the output 

layer, the activation function, the center of activation 

functions, the distribution of center of activation 

functions, and the number of hidden neurons (Cruz 

and Nascimento, 2018). During the training process, 

only the weights between the hidden layer and the 

output layer are modified. The vector of weights  = 

{wl….ws} of the linear output layer is obtained using 

the ordinary least-squares fit that minimizes the mean 

squared differences between ŷi (from RBFNN) and 

the observed ŷi observed in the training set, provided 

that the Gaussian RBFs for centers ck and hk of the 

hidden layer are defined.  

The radial basis function selected is usually a 

Gaussian kernel selected using K-means clustering 

algorithm. The centers are selected using the 

orthogonalization least-squares learning algorithm 

(Chen et al.,1991) and implemented in (Matlab, 

2011). The centers are added iteratively such that 

each new selected center is orthogonal to the others. 

The selected centers maximize the decrease in the 

mean squared error of the RBFNN, and the algorithm 

stops when the number of centers (neurons) added  to 

the RBFNN attains a desired precision (goal error) or 

when the number of centers is equal to the number of 

input vectors, that is, when S = n.  

To select the best RBFNN, a grid for training 

the net was generated, containing different spread 

values and different precision values (goal error). The 

spread value ranging from 5 to 100 and an initial 

value of 0.01 for the goal error was considered. The 

spread parameter allows adjusting the form of the 

Gaussian RBFNN such that it is sufficiently large to 

respond to overlapping regions of the input space but 

not so big that it could induce the Gaussian RBFNN 

to have a similar response (Asvadi et al., 2011). 

 

Comparison of methodologies under a 

GS approach 

The models were compared using the accuracy, 

defined as the correlation between the GEBVs of the 

the true breeding values (TBV), and the mean 

squared error root (MSER). A five-fold cross-

validation scheme was used to assess the performance 

of both genomic prediction methods. Specifically, the 

individuals (500) were randomly split into five equal-

size groups and each group with about 100 

individuals (20% of the population) was in turn 

assigned with phenotypic values and used as the 

validation set. 

The simulations and the RBFNN was 

implemented using Genes (Cruz, 2016) software in 

integration with Matlab (Matlab, 2011). The additive 

and additive-dominance G-BLUP models were fit 

using  Genomic Land  software (Azevedo et al, 2019)  
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via REML through mixed model equations. 

Results and discussion 

Table 2 displays the accuracy and meansquare 

error root (RMSE) values for the scenario without 

dominance. G-BLUP presented accuracy values higher 

than those obtained through RBFNN. Specifically, the 

accuracy values were equal to 0.58 and 0.77 for the low 

and high heritability scenarios, respectively (Table 2). 

Such an assessment, given by the correlation between 

predicted and actual values, is only possible due to the 

availability of simulated data and, according to Long 

et al. (2010), is the best measure to describe accuracy 

since the environment is not a disturbing factor. On the 

other hand, the prediction of genomic genetic values 

based on RBFNN shows  lower  MSER  values  when 

compared to those obtained through G-BLUP for the 

two scenarios evaluated. According to Howards et 

al. (2014), for characteristics determined by additive 

genetic effects, SG models, such as G-BLUP, are proven 

to be efficient. Literature (Gianola et al., 2008; 

Gianola et al., 2011; Gonzalez-Camacho et al., 2012; 

Howards et al., 2014) has presented various studies 

aimed at comparing linear models (Bayesian LASSO - 

BLASSO, Bayesian ridge regression - BRR, Bayes A 

and Bayes B) and non-parametric models (reproducing 

kernel Hilbert space regression - RKHS, Bayesian 

regularized neural networks - BRNN, and radial basis 

function neural networks - RBFNN) and, in general, 

these studies have indicated the efficiency of linear 

models and/or a small improvement using non-

parametric methods (Howard et al., 2014; Gonzalez-

Recio et al., 2014). 
 

Table 2. Accuracy and MSER in two scenarios of broad sense heritability 0.30 (d0h30) and 0.60 (d0h60) obtained 

through GBLUP and RBFNN in scenarios without dominance. 
 

Models Scenarios Accuracy MSER 

GBLUP 
d0h30 0.58 ± 0.04 8.71 ± 0.65 

d0h60 0.77 ± 0.05 9.91 ± 0.85 

RBFNN 
d0h30 0.31 ± 0.05 5.24 ± 0.29 

d0h60 0.65 ± 0.06 3.82 ± 0.35 

In the scenario with dominance, the accuracy and 

mean squared error root (MSER) are presented in Table 

3. G-BLUP, parametrized for dominance or not, showed 

accuracy values higher than those obtained through 

RBFNN in the dominance scenario. Specifically, in 

the low heritability scenario, the G-BLUP accuracy 

values were, respectively, for models parameterized for 

dominance or not, equal to 0.75 and 0.65 considering 

degree of dominance equal to d = 0.5 (Table 3). In turn, 

for dominance equal to 1 (d = 1), the accuracy values, 

for models parameterized for dominance or not, were 

equal to 0.50 and 0.48. For RBFNN, the values were 

0.31 and 0.25 for the low heritability scenarios. The 

same behavior was observed for the scenario with high 

heritability. On the other hand, for all the evaluated 

scenarios, the prediction of genomic genetic values 

based on RBFNN showed lower RMSE values when 

compared to those obtained through G-BLUP (Table 3). 
 

Table 3. Accuracy and MSER in four scenarios of broad sense heritability 0.30 (d0.5h30; d1h30) and 0.6 

d0.5h60; d1h60) obtained through GBLUP and RBFRNN in scenarios with dominance equal 0.5 or 1. 
 

Models Scenarios Accuracy MSER 

G-BLUP d0.5h30 0.65± 0.05 12.49 ±1.18 

 d1h30 0.48 ± 0.03 32.62 ± 2.58 

 d0.5h60 0.65 ± 0.05 12.49 ± 1.14 

 d1h60 0.47 ± 0.05 18.06 ± 1.48 

G-BLUP dom d0.5h30 0.75 ± 0.04 28.55 ±1.41 

 d1h30 0.50± 0.05 91.31 ± 5.64 

 d0.5h60 0.75 ± 0.03 33.00 ± 2.31 

 d1h60 0.66 ± 0.08 21.35 ± 1.98 

RBFNN d0.5h30 0.31 ± 0.05 5.47 ± 2.03 

 d1h30 0.25 ± 0.06 14.55 ± 3.04 

 d0.5h60 0.60 ± 0.05 4.03 ± 2.06 

 d1h60 0.61 ± 0.03 4.27 ± 1.07 
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In general, the results showed a decrease in 

accuracy when dominance increased in both methods. 

This result differs from those obtained by some authors 

(Denis et al., 2011; Almeida-Filho et al., 2016; 

Santos et al., 2016; Toro and Varona, 2018), who 

reported that the incorporation of the dominance 

component in the linear model used lead to an 

improvement in the prediction process of complex 

traits. Concerning the RMSE values, for G-BLUP, the 

higher the influence of dominance, the higher the 

RMSE value obtained, and the adjustment of the 

model to the effects of dominance greatly diminishes 

the estimates of the error. 

Overall, in terms of accuracy, G-BLUP presents 

better results compared to those obtained by RBFNN. 

However, such an approach is more biased. In practical 

terms, bias may not present itself as a problem since 

selection, in general, is based on ranking individuals. 

Finally, it is worth stressing that RBFNN comprises 

only one hidden layer, and networks that are more 

complex may be more suitable for the modeling of 

non-additive effects such as epistasis and dominance. 

Conclusion 

Considering the values of accuracy, RBFNN 

produced lower results than those obtained by G-BLUP. 

On the other hand, RBFNN has low prediction bias. 

Furthermore, the adjustment of GBLUP to dominance 

models, despite increasing the complexity of the model, 

increases predictive accuracy. 
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