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Abstract: This paper presents the state of the art of the statistical modelling as applied to plant 

breeding. Classes of inference, statistical models, estimation methods and model selection are 

emphasized in a practical way. Restricted Maximum Likelihood (REML), Hierarchical 

Maximum Likelihood (HIML) and Bayesian (BAYES) are highlighted. Distributions of data 

and effects, and dimension and structure of the models are considered for model selection and 

parameters estimation. Theory and practical examples referring to selection between models 

with different fixed effects factors are given using the Full Maximum Likelihood (FML). An 

analytical FML way of defining random or fixed effects is presented to avoid the subjective or 

conceptual usual definitions. Examples of the applications of the Hierarchical Maximum 

Likelihood/Hierarchical Generalized Best Linear Unbiased Prediction (HIML/HG-BLUP) 

procedure are also presented. Sample sizes for achieving high experimental quality and 

accuracy are indicated and simple interpretation of the estimates of key genetic parameters are 

given. Phenomics and genomics are approached. Maximum accuracy under the truest model is 

the key for achieving efficacy in plant breeding programs. 

Keywords: model selection, fixed or random, comparisons with different fixed effects, 

HIML/HG-BLUP, FML, statistical inference. 

 

 

 

Statistical modelling and 
estimation methods 

Statistical and genetical modelling of 

experimental data plays a fundamental role in 

genetic improvement. Of particular importance 

are the precise and accurate estimation or 

prediction of individual genetic values and the 

inference about genetic control of the traits 

(variance components, broad and narrow sense 

heritabilities, repeatability, correlations and 

genotype × environment interaction). These guide 

all other activities, mainly selection and crossing. 

All these should be done under the truest or more 

correct model. High accuracy and precision 

provide efficiency, which together with the right 

model selection warrant the efficacy of the 

breeding program. Efficiency means to do right 
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(with precision and accuracy) the things, while 

efficacy means to do the right thing (the one that 

should be done, aiming to get the desired result). 

At least, four classes of statistical inference 

(Frequentist Least Square, Restricted Maximum 

Likelihood, Hierarchical Maximum Likelihood 

and Bayesian) and five estimation methods: 

Least Square (LS), Restricted Maximum 

Likelihood/Best Linear Unbiased Prediction 

(REML/ BLUP), Iterative Weighted Least 

Squares-REML/BLUP (IWLS-REML/BLUP), 

Bayesian Markov Chain Monte Carlo (BMCMC) 

and IWLS-Hierarchical Maximum Likelihood/ 

Hierarchical Generalized BLUP (IWLS-HIML/ 

HG-BLUP), are useful in genetics and breeding, 

according to type and distribution of data and 

effects, leading to the following classes of 

models: Linear Fixed Model (LFM), Linear 

Mixed Model (LMM), Generalized Linear 

Mixed Model (GLMM), Bayesian Random 

Model (BRM) and Hierarchical Generalized 

Linear Mixed Model (HGLMM) (Table 1). 

All models are mixed because all contain a 

mean and a residual variance. Searle (1971) 

wrote “in point of fact, of course, all models 

having both mean and error terms are mixed 

models because the mean is a fixed effect and the 

errors are random”. Then simplified 

denominations of the models are Linear, 

Generalized, Hierarchical and Bayesian. 

Table 1. Data distributions, classes of models, estimation methods and statistical inference classes as applied 
to genetics and breeding. 

Class of data 
Class of 
model 

Type of data and distribution 
Estimation 
method* 

Class of 
Inference 

Phenotypic, 
genomic, 
phenotypic 
plus genomic 

LFM Balanced and continuous (Normal) LS 
Frequentist 

Least Square 

LMM Continuous (Normal) REML/BLUP 
Residual 
Maximum 
Likelihood 

GLMM 
Continuous (Normal), exponential 

family for the residual (discrete and 
continuous) 

IWLS-REML/BLUP 
Residual 
Maximum 
Likelihood 

HGLMM 
Continuous (Normal), exponential 

family for any random factor 
(discrete and continuous) 

IWLS-HIML/HG-
BLUP 

Hierarchical 
Maximum 
Likelihood 

BRM Discrete and continuous (any) BMCMC Bayesian 

HG-BLUP and BLUP: they are also a conditional mode (COND-MOD) estimator. * Variance/Mean parameters. 

Traditionally, three classes of approaches 

have been used for statistical inference: 

frequentist (Pearsonian), likelihood (Fisherian) 

and Bayesian. According to these approaches, 

the confidence/ credibility intervals for 

unobservable variables can be: Fisher’s fiducial 

(fixed interval, for fixed unknowns), frequentist 

(random interval, for fixed unknowns), and 

Bayesian (fixed interval, for random unknowns). 

Recently, a fourth approach, hierarchical 

likelihood, has emerged as a way of unifying the 

three classes of approaches (Lee et al., 2017). 

Generally, the variables associated with 

traits are classified as fixed or random. Fixed 

variables are denoted “parameters” and no 

assumptions are made about their distributions. 

Random variables are assumed to be sampled 

from a probability distribution with known 

parameters. Estimates obtained by the Maximum 

Likelihood and Bayesian methods must be 

located in the parametric space, since if outside 

of that space such estimates have zero likelihood. 

This is not guaranteed by the Least Square 

estimators. For continuous variables, likelihood 
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is computed as the statistical density of the 

conditional distribution to the data sample. The 

statistical density f(y), for a continuous variable 

y, is defined as the ordinate of the distribution 

function (accumulated) for a given value of y. 

The Least Square method has limitations to 

handle with unbalanced data. Then, the Linear 

Mixed Models (LMMs) for variables with 

continuous Normal distribution were developed 

by Henderson (1952; 1973; 1975) and are 

implemented via BLUP and estimation of 

variance components by REML (so called 

Residual, Restricted or Reduced Maximum 

Likelihood) developed by Patterson and 

Thompson (1971) and Thompson (1973). 

Generalized Linear Mixed Models (GLMMs) 

were developed by Nelder and Wedderburn 

(1972) to deal with discrete variables. Lee and 

Nelder (1996) extended the BLUP approach to a 

broad class of statistical models with random 

effects, called Hierarchical Generalized Linear 

Mixed Models (HGLMMs). H stands for 

Hierarchical, Stratified or Structured. 

In GLMMs it is assumed that the residuals 

may not have a Normal distribution, but the other 

random effects of the model follow the Normal 

distribution. However, this assumption is not 

always appropriate. An example is the situation in 

which the data follow the Poisson distribution and 

the link function specified for the residuals is 

Logarithmic. In this case, a more appropriate 

assumption for the other random factors is a 

Gamma distribution with a Logarithmic link 

function. Models in which a probability 

distribution and a link function can be specified 

for each random factor in the model belong to the 

HGLMMs class. Since random factors are not 

always hierarchically classified, an alternative 

name for HGLMMs is Stratified Generalized 

Linear Mixed Models (SGLMMs). A BLUP 

predictor for HGLMMs was presented by Lee and 

Ha (2010). For non-Normal HGLMMs, linear 

BLUP may not be efficient. The authors presented 

a combination of BLUP with Tweedie dispersion 

models based on Exponential distribution. 

After initial works by Robertson (1955), 

Ronningen (1971) and Dempfle (1977), Gianola 

and Fernando (1986) proposed the Bayesian 

estimation for models of genetic evaluation. In 

addition to the Normal distribution adopted for 

the random effects (g) in the classical linear 

mixed model and for the likelihood of the vector 

of observations (y), the Bayesian approach 

requires assignments for the a priori distributions 

of the fixed effects and components of variance. 

The attribution of non-informative or 

uniform a priori distributions for the fixed effects 

and components of variance is a way of 

characterizing an a priori vague knowledge 

about the referred effects and components. Thus, 

the estimation of the fixed and random effects of 

the Fisherian model, using the Bayesian 

approach, can be performed as long as non-

informative prior is assigned for the fixed effects, 

Normal prior for the random effects and Normal 

likelihood for the vector of observations. 

Using non-informative a priori distributions 

for the fixed effects and components of variance, 

the modes of the a posteriori marginal 

distributions of the components of variance 

correspond to the estimates obtained by REML. 

The paper by Gianola and Fernando (1986) was 

an important publication before the MCMC era. 

At that time the application of Bayesian methods 

was technically arduous and required advanced 

computational techniques. Beginning in 1990, 

statisticians introduced MCMC methods (Gelfand 

and Smith, 1990) and this marks the start of a new 

era for analysis in quantitative genetics. MCMC is 

especially well suited for implementing Bayesian 

models by sampling-based approaches to 

calculating marginal densities. 

On the other hand, Fisherian estimation of 

Bayesian models can be performed via 

HGLMMs, with computational advantages (less 

time and trivial convergence criterion). 

HGLMMs can be fitting using their Hierarchical 

Likelihood (HL), which is an extension of the 

joint likelihood used by Henderson and consists 

of a joint density for observations and random 

effects. The estimates of fixed and random 

effects are derived from the maximization of HL 

and produce direct extensions of Henderson’s 

mixed model equations. The components of 

variance are estimated by maximizing the 

adjusted HL profile, which is a direct extension 
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of REML. In this way, HGLMMs extends the 

familiar BLUP theory used in genetics to a 

broader class of models. 

The class of Hierarchical Generalized 

Linear Mixed Models (HGLMMs) are fitted via 

Hierarchical Maximum Likelihood (HIML) by 

the Iterative Weighted Least Squares (IWLS) 

algorithm. This methodology allows 

predictions by the Hierarchical Generalized 

BLUP method (HG-BLUP) for random effects 

and estimates fixed effects by the Hierarchical 

Generalized Best Linear Unbiased Estimation 

method (HG-BLUE). The components of 

variance are estimated via HIML. This recently 

developed statistical approach for estimation, 

prediction, inference and model selection is 

very appealing. 

Exploring the hierarchical nature of HL, 

models for the variance components of the 

dispersion parameters can be added one by one. 

A broad class of distributions can be used to 

model both the response variable and the random 

effects, a fact that increases the flexibility of the 

modeling. HL can also be used to derive model 

selection tools. The conditional Akaike 

Information Criterion (cAIC) is analogous to the 

Deviance Information Criterion (DIC) used in 

Bayesian statistics. 

The HGLMM methodology allows also 

specifying y with probability distributions other 

than the traditional Normal, Binomial, Poisson 

and Negative Binomial. This can be relevant for 

several practical applications. For example, 

growth traits (diameter and height) in tree species 

are better described by the Weibull distribution 

than by Normal. Additionally, in this case, the 

assignment of a Gamma distribution (belonging 

to the family of Eulerian distributions) to y may 

be even more efficient, since Weibull is a 

particular case of the Generalized Gamma 

(Percontini et al., 2014). 

The option of fitting the various factors of 

random effects under different distribution 

assumptions is of great interest and can be done 

via HGLMMs, that is, the definition of these 

distributions does not need to be confined only to 

the Normal distribution. This option can lead to 

greater predictive and selection efficiency, 

especially in plant breeding, in which the models 

include many factors of random effects. 

The LS method does not promote the 

regularization (shrinkage) of the estimation 

process (Resende et al., 2014) and does not allow 

to consider the correlation between levels or 

effects belonging to the various factors, for 

example, it does not consider the correlation 

between levels of the effects of the treatments 

factor. On the other hand, REML, BAYES and 

HIML allow to consider these correlations.  

In terms of the treatments factor, when it has 

a genetic connotation (comparison of individuals, 

for example), the correlation matrix between the 

levels of the factor’s effects can be uncorrelated 

(diagonal D, which can be an identity I in the case 

of random effects or a null matrix in the case of 

fixed effects) or correlated given by three types of 

information: genealogical (correlation matrix A), 

genomic (correlation matrix G) and both 

simultaneously (correlation matrix H). 

In terms of the animal and plant breeding, 

genetic selection can be carried out via: phenomic 

selection (genetic values predicted based on 

genealogy and phenotypes); genomic selection 

(genetic values predicted based on marker 

genotypes and phenotypes); geno-phenomic 

selection (genetic values predicted based on 

marker genotypes, phenotypes and genealogy, by 

the single step procedure via H matrix). 

Additionally, a multivariate or a structured 

correlation matrix (longitudinal, spatial, 

curvilinear) can be imposed on treatment factors 

(𝐼 ⊗ 𝑀, 𝐴 ⊗ 𝑀, 𝐺 ⊗ 𝑀, 𝐻 ⊗ 𝑀; where M is a 

matrix that describes the correlation structure) or 

other random effects, like residual. The 

combination of these four (LS, REML, BAYES 

and HIML) estimation methods with the four 

types of correlation matrix (assuming 

Multivariate Normal distribution of individual 

observations) provides the thirteen general types 

of statistical approaches used in genetic analyses, 

as shown in Table 2. Within these approaches, 

the following models can be fitted: Univariate, 

Multivariate, Longitudinal, Spatial, Curvilinear, 

Competitional and Survival. 
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Table 2. Estimation methods of variance parameters, correlation matrices and statistical models used in genetic 
analyses. 

Estimation method 
of variance 
parameters 

Correlation matrix 
Model 

D A G H 

LS 
D-LS 

(ANOVA) 
- - - Univariate, Multivariate 

REML D-REML A-REML G-REML H-REML 

Univariate, Multivariate, 
Structured, Longitudinal, Spatial, 

Curvilinear, Competitional, 
Censored (Survival) 

HIML D-HIML A-HIML G-HIML H-HIML 

Univariate, Multivariate, 
Structured, Longitudinal, Spatial, 

Curvilinear, Competitional, 
Censored (Survival) 

BAYES 
D-

BAYES 
A-

BAYES 
G-

BAYES 
H-

BAYES 

Univariate, Multivariate, 
Structured, Longitudinal, Spatial, 

Curvilinear, Competitional, 
Censored (Survival) 

 

Estimation and prediction 
of components of means via 

Conditional Modes (COND-MOD) 

Lee and Nelder (2004) see the analysis 

process as consisting of two main activities: 

selection of the model in order to find models 

with good and parsimonious fitting, and predict-

tion of the quantities of interest using the selected 

models taking into account their uncertainties. 

Thus, inferences about marginal responses or 

individual subjects belong to the prediction 

phase. Then, the conditional model is the basic 

model and any conditional model (individual 

prediction) leads to a specific marginal model 

(prediction in the mean or average). 

The distinction between prediction and 

estimation was first reported by Lane and Nelder 

(1982). Prediction is a different purpose than 

estimation. Estimation forms the basis of predict-

tions. Estimation and prediction are not the same 

except by chance. Lee and Nelder define predict-

tion when future (unobserved) observations are 

“estimated” and estimation when random effects 

are “estimated” in data already observed. It is an 

estimation of unknowns in a vector v, which 

become fixed when the y data are observed, 

although possibly changing in future samples. 

Therefore, in this case, BLUE of the random 

parameters is said instead of BLUP. An 

unobservable future observation is not fixed 

given the data. 

In the model for v in 𝑌𝑖𝑗𝑘 = 𝑢 + 𝑣𝑖𝑗 + 𝜉𝑖𝑗𝑘, 

in which 𝑣𝑖𝑗 = 𝑔𝑖 + 𝑔𝑒𝑖𝑗 and 𝑌𝑖𝑗𝑘 and 𝜉𝑖𝑗𝑘 are the 

observation and random error, the desire to use 

marginal predictions (𝑢̂ + 𝑔𝑖̂ or 𝑢̂ + 𝑔𝑖̂ + 𝑔𝑒..̅̅ ̅̂̅ , for 

example) it is not a reason for not using 

conditional models. Inferences will usually be 

richer if conditional models are used. Care 

should be taken when comparing parameter 

estimates by different models. The conditional 

prediction (𝑢̂ + 𝑔𝑖̂ + 𝑔𝑒𝑖𝑗̂ , for example) provides 

confidence interval of a prediction for a potential 

observation given individual risk factors (𝑔𝑒𝑖𝑗̂ ). 

This aspect is unique in conditional modeling and 

has wide application.  

The HL uses modes and curvature to make 

inferences about unobservables. The term 

“Conditional Modes” (COND-MOD) is prefer-

ble to the name BLUP because it better captures 

reality and makes more sense in generalized and 

nonlinear contexts and in Non-Linear Hierarchi-

cal Models in which the values of random effects 

that would be estimated, would be BLUP if they 

were linear (that is, linear functions of 

observations) and unbiased. But, there is no clear 

attribute where they are best. For a Generalized 

Linear Mixed Model or a Non-Linear Mixed 

Model these estimates are not BLUP (Harville, 

2008; Witkovský, 2012). 

The BLUPs of a Generalized Linear Mixed 

Model provide the Conditional Modes of random 

effects, rather than BLUPs or Best Linear 
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Unbiased Predictors. They are the modes that 

maximize the density function of the random 

effects conditional in the variance-covariance 

parameters and in the data, that is, given the 

observed data and for fixed (known) values of the 

parameters. For the particular case of a Linear 

Mixed Model, these modes are also BLUPs 

(Resende et al., 2018). 

Historically the term hierarchical was often 

used as a synonym for nested. However, it has 

been recognized within the linear model 

community that mixed and random effects 

models (nested or not) can be seen as hierarchical 

(in the sense of stratification). As random factors 

are not always hierarchically classified, an 

alternative term for HGLMM is Stratified or 

Structured Generalized Linear Mixed Model 

(SGLMM). These are also COND-MOD and also 

include Non-Linear Models. 

An advantage of the mode estimator over 

the sample mean is that it allows the selection of 

the best model instead of the average model. Ma 

and Jorgensen (2007) advocate against the use of 

modal estimates for random effects and proposed 

the use of the Orthodox BLUP method under 

averages. However, Lee and Ha (2010) showed 

that the mode estimation of the HL function via 

HG-BLUP provides both better statistical 

precision and maintenance of the declared level 

of coverage probability, better than the Orthodox 

BLUP method. 

Estimation and prediction via HIML/ 
HG-BLUP with simultaneous fitting of 
the mean and dispersion parameters 

Lee and Nelder (2006) introduced the class 

of Double HGLMM (DHGLMM) in which 

random effects can be specified in both the mean 

and dispersion components. DHGLMMs allows 

modeling of the mean and variance of the 

variance components of random effects and resi-

dual dispersion parameters. Thus, for example, 

the model for residual variance includes both 

effects, fixed and random, on a logarithmic scale. 

The distributions for the variance 

components are not restricted to the Inverse Chi-

Square (as generally adopted in the Bayesian 

approach of conjugated distributions) but are also 

derived from the Gamma distribution with its 

various derived distributions. This also leads to 

greater flexibility in modeling. Generalized 

Linear and Hierarchical Generalized Linear 

Models allow variables distributed in the 

exponential family (Normal, Gamma, Poisson, 

Binomial) and allow a non-linear link between 

the observation and the linear predictor. 

The REML is a special case of a Genera-

lized Linear Model with Gamma‐distributed 

“data” (𝑦 − 𝑋𝑏)2 (Thompson, 2019). Extension 

to the multivariate case of sums of squares and 

cross products distributed as Wishart distribution 

can also be used to model data. For heritabilities, 

which are defined in the parametric space 

between 0 and 1, the best distribution is Beta, 

which is also defined in the space between 0 and 

1 and then best describes the process. 

Models with mean and variance 
components in the dispersion 

In genetic improvement, the heterogeneity 

of the residual variance within families can be 

identified using a structural model for the 

variances via a Linear Log Model (Resende, 

2007a). A functional form can also be used, such 

as variance proportional to a power function of 

the mean. This latter approach will be considered 

below using models with mean and variance 

components in the dispersion. 

Dispersion modeling is important in 

statistics, for example, in the Heteroscedastic 

Linear Model 𝑦~𝑁[𝑋𝛽, exp(𝑋𝑣𝑎𝑟𝛽𝑣𝑎𝑟)], which 

requires REML for unbiased estimation of fixed 

effects on variance (𝛽𝑣𝑎𝑟). BLUP generally refers 

to estimated genetic values for the average 

(𝑣𝑚𝑒𝑑). The model 

𝑦 = 𝑋𝛽𝑚𝑒𝑑 + 𝑍𝑣𝑚𝑒𝑑 + 𝑒, 

traditionally assumes homoscedastic residuals, 

that is, 𝑒~𝑁(0, 𝐼𝜎𝑒
2). But selection can lead to an 

increase in residual variance. Thus, a model with 

residual variance heterogeneity can be recom-

mendded (Sorensen and Waagepetersen, 2003), 

with residuals with the following distribution:  
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𝑒~𝑁[0, 𝑒𝑥𝑝(𝑋𝑣𝑎𝑟𝛽𝑣𝑎𝑟 + 𝑍𝑣𝑎𝑟𝑣𝑣𝑎𝑟)], 

or equivalently 

𝑒~𝑁[0, 𝑒𝑥𝑝(𝑋𝑣𝑎𝑟 𝛽𝑣𝑎𝑟 ) 𝑒𝑥𝑝(𝑍𝑣𝑎𝑟 𝑣𝑣𝑎𝑟)], 

and genetic values are estimated for the variance 

(𝑣𝑣𝑎𝑟), according to model 

 𝑦𝑣𝑎𝑟 = 𝑋𝑣𝑎𝑟𝛽𝑣𝑎𝑟 + 𝑍𝑣𝑎𝑟𝑣𝑣𝑎𝑟 + 𝑒𝑣𝑎𝑟 . 

Then the uniformity of the trait in the 

population can be increased by the selection of 

individuals with lower estimated genetic values 

for the residual variance. Thus, to obtain 

uniformity, the ideal is to select individuals with 

lower genetic values 𝑣𝑣𝑎𝑟  estimated for variance 

and higher 𝑣𝑚𝑒𝑑  estimated for the mean. The 

correlation 𝑐𝑜𝑟(𝑣𝑚𝑒𝑑, 𝑣𝑣𝑎𝑟) can also be 

estimated and, if negative, indicates that 

selection by 𝑣𝑚𝑒𝑑  already leads to greater 

uniformity (lower 𝑣𝑣𝑎𝑟). If positive, selection 

must be based on both 𝑣𝑚𝑒𝑑 and 𝑣𝑣𝑎𝑟, and then 

methods are needed to estimate both 

simultaneously. One example using the Gamma 

distribution in an experiment with Eucalyptus 

clones is presented below.  

Heritabilities of the mean and dispersion components in the Gamma distributed data. 

Variation Source 

Components of variance (cv) 
of the mean 

Components of variance (cv) 
of the dispersion 

cv 𝒆𝒄𝒗 cv 𝒆𝒄𝒗 

Clones -3.332 0.036 -2.101 0.122 

Residual -2.879 0.056 -2.879 0.056 

Total - 0.092 - 0.179 

𝒉² (heritabilities) - 0.39 - 0.69 

 

 

It can be seen that the residual variance 

between clones is under genetic control with 

heritability of 0.69. Breeding traditionally uses 

only the distribution of the mean (components of 

means or first moments 𝑔𝑖) and does not use 

variance distribution (𝑣𝑣𝑎𝑟). But both can be used 

simultaneously, via (𝑔𝑖𝑗𝑚𝑎𝑥
= 𝑔𝑖 + 3.09√𝑣𝑣𝑎𝑟𝑖

) 

which 𝑔𝑖𝑗𝑚𝑎𝑥
 indicates the maximum genotypic 

value of an individual j in the family i (Resende, 

2015). In this case, the interest lies in 

greater 𝑣̂𝑣𝑎𝑟 and a proposition of the MEAN-

DISP method of selection can be done, which 

uses both the mean and dispersion. 

This index can be used for reselection 

within families or populations. In this case, 

blocks of families are settled in new experiments 

for the identification of superior exceptional 

individual (Resende and Barbosa, 2006). 

The number of plants per family k can be 

given by 𝑛𝑘 = (𝑔𝑖𝑗𝑚𝑎𝑥
𝑔𝑘𝑙𝑚𝑎𝑥

⁄ )200, where 200 

is the adequate number of individuals in the 

family of the best individual obtained according 

to the distribution of the maximum as given by 

Escobar et al. (2018). 

Dimension and structure of models 

Regarding to the dimension and structure 

of models, they can be classified in Univariate, 

Multivariate, Curvilinear, Structured and Censo-

red, with the structures as in the Table 3. 

It can be seen (Table 3) that Random Re-

gression approaches are the full basis of genomic 

selection. This means that SNP prediction can be 

accomplished by Ridge, Bayesian and Lasso 

Random Regressions. This allowed the evolution 

of genetic predictions from family and progeny, 

to individual and gene (SNP) levels. According 

to the generic model 𝑦 = 𝑋𝑏 + 𝑒, where y is the 

response variable and X is a matrix of the marker 

covariates, a comparison between the LS, RR 

(Ridge Regression) and Lasso methods is 

presented below. It can be seen that the RR 

solution contains in addition to the LS solution 

the regularization parameter 𝜆, which imposes 

shrinkage according to the process called 

Tikhonov regularization, which is a Gaussian 

process comprising 𝑛 stochastic processes. If the 

Lasso1 solution is negative, then the regression 

coefficient is declared as 0; if the Lasso2 solution 
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is positive, then the regression coefficient is also 

declared as 0. Table 4 shows the main modelling 

applied to multivariate data in genetic improve-

ment. Concerning to the types of factors and 

effects, the models can be classified as in the 

Table 5. 

Table 3. Dimension in space and structure of models. 

Dimension in Space Structure 

Univariate 
Several factors (plots, blocks, common environment, repeatability and 
genotype × environment interaction), several experimental and genetic 
designs, several reproductive and propagation systems 

Multivariate Unstructured, AMMI, PCAMM, FAMM 

Curvilinear Random Regression, Cubic Spline, B-Spline, P-Spline, Fourier Series 

Structured 
Spatial, Temporal, Longitudinal, Competitional (social interaction) Repeated 
Measures, Autoregressive, Compound Symmetry, Exponential, Spherical, 
Ante-Dependence, Path Structural Equations 

Censored Survival, Longevity, Precocity 

 Subtypes 

Random Regression 

Legendre polynomials (Random Regression); Segmented Polynomials (Cubic, 
B and P Splines); Ordinary Polynomials (Reaction Norms); Fractional 
Polynomials Autoregressive; Ridge Regression (genomics); Bayesian 
Regression (genomics); Lasso Regression (genomics) 

AMMI: Additive Main Effects and Multiplicative Interactions; FAMM: Factor Analytical Mixed Model; PCAMM: Principal Components 
Analysis Mixed Model. 

Comparison between the LS, RR (Ridge Regression) and Lasso methods. 

Method LS RR Lasso 

Estimator of b 𝑏̂𝐿𝑆 = (𝑋′𝑋)−1𝑋′𝑌 𝑏̂𝑅𝑅 = (𝑋′𝑋 + 𝜆)−1𝑋′𝑌 

𝑏̂𝐿𝑎𝑠𝑠𝑜1 = (𝑋′𝑋)−1𝑋′𝑌 − 𝜆, 

if the LS solution is positive 
 

𝑏̂𝐿𝑎𝑠𝑠𝑜2 = (𝑋′𝑋)−1𝑋′𝑌 + 𝜆, 

if the LS solution is negative 

Table 4. Modelling applied to multivariate data. 

Multivariate data Modelling 

Multivariate Unstructured Multivariate; Principal Components; Latent Factors 

Multi-Environment 
Centered Principal Components (AMMI); Latent Factor Analytical 
Mixed Model (FAMM); Random Regression via Reaction Norms 
(curvilinear) 

Incremental Repeated 
Measures 

Compound Symmetry; Autoregressive; Structured Ante-Dependence 
(SAD) 

Longitudinal Repeated 
Measures 

Curvilinear (Random Regression via Legendre Polynomials, via Type B 
Segmented Polynomials (Spline), via Fourier Series) 

Spatial Data 
Separable Autoregressive Models AR1 x AR1; Exponential 
Geostatistical Model; Spherical Geostatistical Model 

Time Series 
Moving Averages (MA)Models; Autoregressive Models; ARMA Models; 
ARIMA Models; Kalman Filter (BLUP), Fourier Series 
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Table 5. Types of factors or effects and effects classes. 

Factors or Effects 

Genetical 

Residual 

Permanent 

Common Environment (plot) 

Maternal 

Contemporary Group (block) 

Macroenvironment (site) 

Genotype ×Environment Interaction 

Effects classes 

Fixed 

Random 

Fixed Covariables 

Polynomial Equations Covariables 
 

Pioneering papers in Brazil on each 
kind of analytical model and 

estimation procedure 

Combining all the information presented in 

Tables 1, 2, 3, 4 and 5, several analytical methods 

and estimation procedures were produced. Some 

pioneer papers in Brazil on each of these 

situations, particularly those on mixed linear 

modelling in plant breeding, are presented in 

Table 6, with the aim of showing how the practical 

use and the complexity of models have evolved. 

Resende et al. (1990) and Resende (1991) 

presented some theory of the deriving of optimal 

selection indexes, involving various sources of 

information and comment on combined selection 

indexes involving data of individuals and their 

relatives. These indexes (Resende and Higa, 

1994) are BLUP for the case of balanced data, as 

demonstrated by Resende and Fernandes 

(1999a). Combined selection indexes were first 

proposed by Lush (1945) for animals, by Wright 

(1962) for allogamous plants and by Weber 

(1982) for autogamous plants. 

From 1990 to 2000 all the fundamental 

principles and methodology were approached, 

including Multivariate, Bayesian, Random 

Regression and Generalized Models for discrete 

data. Also, software’s in Fortran were developed. 

From 2001 to 2006, due to the availability of 

higher computational power, it was possible to use 

more complex models and to fill details of the 

methods. From 2007 on, genomic selection came 

into vogue, after the advent of high density SNP 

(Single Nucleotide Polymorphism) genotyping. 

Also, HGLMMs started to gain attention. 

Hypothesis tests, goodness of fit, 
parsimony and model selection 

The hypothesis tests regarding fixed and 

random effects in the context of mixed models as 

well as the criteria for comparing models are 

presented in Table 7. 

Hypothesis tests for fixed effects 

Under REML estimation, Wald’s W 

statistic has been recommended for testing fixed 

effects (Kenward and Roger, 1997). W for small 

samples is approximated by an F distribution. 

Thus, although other statistics can be introduced 

for the fixed effects test, Wald’s statistic is 

attractive because it accurately reproduces the 

Analysis of Variance for balanced designs. If 

the variance components are estimated by Full 

Maximum Likelihood (FML), two nested 

models with different structure of fixed effects 

and with the same structure of random effects, 

can be compared via LRT (Gumedze and 

Dunne, 2011). 

Hypothesis tests for random effects 
and criteria for model comparison 

The comparison of hierarchical or nested 

models, with the same fixed effects structure, can 

be performed by Likelihood Ratio Test (LRT) or 

Deviance Analysis, Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC). 

The comparison of non-hierarchical models, but 

with the same fixed effects structure, must be done 

using the AIC and BIC procedures. 
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Table 6. Some pioneering papers in Brazil on each kind of model and estimation procedure applied to genetic 
improvement. 

Subject / References 
Starting 

year 

LMM - REML/BLUP – Univariate: Resende et al. (1993;1996;1999a,b; 2001a); Resende and 
Fernandes (2000); Duarte and Vencovsky (2001); Bueno Filho and Vencovsky (2000) 

1993 

Development of the Selegen REML/BLUP Software: Resende et al. (1994; 1999a); Resende 
(2007b) 

1993 

LMM- REML/BLUP - Unstructured Multivariate: Resende et al. (1994; 1999a,b); Resende 
(1999) 

1994 

Accuracy and experimental quality: Resende (1995); Resende and Duarte (2007) 1995 

LMM - REML/BLUP - Curvilinear-Longituninal Random Regression: Resende (1997; 
1999a,b); Resende et al. (2001b) 

1997 

BRM - Bayesian Random Models: Resende (1997; 1999a,b); Resende (2000b); Resende et 
al. (2001c) 

1997 

GLMM - IWLS-REML/BLUP for Discrete Data: Resende (2000a); Resende (2002) 2000 

Use of ASReml Software: Resende (2000a) 2000 

LMM - REML/BLUP - Structured - Autoregressive, Spatial: Resende and Sturion (2001; 
2003); Resende (2002); Duarte and Vencovsky, 2005) 

2001 

LMM - REML/BLUP - Curvilinear –Splines: Resende and Sturion (2001); Resende et al. 
(2006) 

2001 

LMM - REML/BLUP - Structured - Social Competition: Resende and Thompson (2003); 
Resende et al. (2005) 

2003 

LMM - REML/BLUP - Multivariate Factor Analytical: Resende and Thompson (2003, 2004) 2003 

LMM - REML/BLUP - Spatial Multivariate: Resende and Thompson (2003); Resende et al. 
(2006) 

2003 

Indices BLUP MHPRVG (Harmonic Mean of the Relative Performance of the Genetic 
Values) for adaptability plus stability, called Resende_indexes by Olivoto and Lúcio 
(2020) in a package in R: Resende (2004; 2007a) 

2004 

GWS - Genomic Wide Selection (RR-BLUP; G-BLUP; BAYES A, B, C and Cpi; Lasso, 
Blasso): Resende (2007a); Resende et al. (2008); Grattapaglia and Resende (2011); Resende 
et al. (2012a,b); Resende Jr. et al. (2012) 

2007 

HGLMM - HIML/HG-BLUP: Resende (2007a); Resende et al. (2014); Resende et al. (2018) 2007 

BLUP –Autogamous (Genealogy; SIPPPG): Nunes et al. (2008); Resende et al. (2015; 2016) 2008 

BLUP-Annual Allogamous: Viana et al. (2010; 2011a,b) 2010 

Survival and Censored data: Resende et al. (2012), Resende et al. (2014), Santos et al. 
(2015; 2016) 

2012 

BLUP – Autogamous, Perennials, Clonal and Seminal propagation: Viana and Resende 
(2014) 

2014 

Table 7. Hypothesis tests for fixed and random effects and criteria for model comparison. 

Hypothesis Tests Effect 
Asymptotic 
Distribution 

Calculation 

F Fixed and random F 𝐹 = (𝜎𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
2 + 𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

2 ) 𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
2⁄  

WALD n small = F Fixed F 𝑊 = 𝜃̂2 𝑉𝑎𝑟(𝜃̂)⁄  

WALD n large = LRT Fixed Chi-Squared 𝑊 = 𝜃̂2 𝑉𝑎𝑟(𝜃̂)⁄  

Likelihood-Ratio Test (LRT) Random Chi-Squared 𝐿𝑅𝑇 = (−2𝐿𝑜𝑔𝐿)𝑝+1 − (−2𝐿𝑜𝑔𝐿)𝑝 

Akaike Information 
Criterion (AIC) 

Random KL 𝐴𝐼𝐶 = −2𝐿𝑜𝑔𝐿 + 2𝑝 

Bayesian Information 
Criterion (BIC) 

Random - 
𝐵𝐼𝐶 = −2𝐿𝑜𝑔𝐿 + 𝑝𝐿𝑜𝑔(𝑑), 

where 𝑑 = 𝑁 − 𝑟(𝑥) 

Bayes Factor (BF) Random - 𝐵𝐹12 ≈ 𝑒𝑥𝑝[− (1 2)⁄ ∆12] 

DIC-Bayesian Random - Sampling by MCMC 

C-AIC-HL Random - - 

∆12= 𝐵𝐼𝐶1 − 𝐵𝐼𝐶2; KL: Kullback Leibler discrepancy; DIC-Bayesian: Bayesian Deviance Information Criterion; C-AIC-HL: conditional AIC 
of the Hierarchical Likelihood; 𝜃:is the parameter;𝑑: degrees of freedom; 𝑝: number of parameters; 𝑟(𝑋): rank of the incidence matrix 𝑋.  
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Likelihood-Ratio Test (LRT) 

The significance of the difference in the fit 

of different nested models can be tested using the 

LRT, defined by  

𝐿𝑅𝑇 = (−2𝐿𝑜𝑔𝐿)𝑝−1 − (−2𝐿𝑜𝑔𝐿)𝑝. 

So, it suffices to compare the difference 

between deviances (−2𝐿𝑜𝑔𝐿) of the model with 

the highest number of parameters - model with 

the lowest number of parameters, associated with 

two fitted models, with the value of the 

probability density function (Table of 𝜒2) for a 

given number of degrees of freedom and error 

probability. The number of degrees of freedom is 

defined by the difference, between models, in the 

number of estimated parameters (fixed effects + 

components of variance). For models with the 

same fixed effects structure, it suffices to 

consider the difference in the number of 

components of variance. 

The lower the deviance of a model, the 

lower the residuals of the model and the better 

the model. It is possible to have a negative 

deviance. Deviance is derived from a likelihood, 

which derives from Probability Density Func-

tions (PDF). Evaluated at a certain point in the 

parametric space, the PDF may have a density 

greater than 1 due to small standard deviation or 

lack of variation. Likelihoods greater than 1 lead 

to negative deviances and are even adequate 

(Hall, 2014). The important thing is that the 

difference between deviances of two models is a 

positive value. 

For testing close to the limit of the 

parametric space, Stram and Lee (1994) suggest 

a correction by multiplying the P value associa-

ted with 𝜒1
2 by 0.5, that is, suggest the use of a 

distribution 𝜒0.5
2 . In this case (mix of distributions 

with 1 and 0 degrees of freedom), the tabulated 

Chi-Square value for the 5% significance level is 

2.79. 

Akaike Information Criterion (AIC) 

When two nested models are fitted, the one 

with more parameters has the highest 𝐿𝑜𝑔𝐿 and 

the lowest deviance (−2𝐿𝑜𝑔𝐿). However, this is 

not necessarily the best model. This means that 

you cannot directly compare −2𝐿𝑜𝑔𝐿 when the 

number of parameters varies between models. In 

addition to the LRT, another criterion for the 

selection of models is the AIC, which penalizes 

the likelihood by the number of fitted 

independent parameters. 

The AIC is given by 𝐴𝐼𝐶 = −2𝐿𝑜𝑔𝐿 +

2𝑝, where p is the number of estimated 

parameters. Lower AIC values reflect a better 

overall fit. Thus, the AIC values are calculated 

for each model and the one with the lowest one 

(in at least 2 units, according to Cavanaugh and 

Neath, 2019) is chosen as the best model. There 

is an asymptotic equivalence between the choice 

of models according to the AIC criteria and 

cross-validation (Stone, 1977; Fang, 2011). 

The AIC is related to the concepts of 

Kullback-Leibler information and Maximum 

Likelihood. Kullback-Leibler information is a 

physics concept for measuring the difference 

between the model (approximation of reality) and 

reality (data generation process). Akaike (1974) 

realized that the Log of the likelihood of a model is 

an estimator of the Kullback-Leibler information, 

however biased. And this bias is equal to the 

number of parameters in the model. Then, he 

defined the AIC as the deviance plus twice the 

number of model parameters. As the objective is to 

minimize the loss of information, the model with 

the smallest (in at least 2 units) AIC has the most 

support in the data. If the models show differences 

between AIC less than 2, the one with the lowest 

number of parameters must be selected. 

The first term of the AIC can be interpreted 

as a model goodness of fit measure and the 

second term as a penalty. Thus, in the case where 

models with the same number of parameters are 

compared, it is necessary to compare only 

−2𝐿𝑜𝑔𝐿 by the LRT. The advantage of AIC is 

that comparisons are not limited to models with 

a hierarchical structure of factors, a feature that 

makes AIC a generic tool for model selection. It 

can be used, for example, to compare models 

with errors showing different distributions. 
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The AIC can also be used to compare 

models based on different probability 

distributions for the trait: for example, Normal 

versus Gamma, Poisson versus Negative Bino-

mial. If the models in the candidate collection are 

based on different distributions, then all of the 

terms in each likelihood must be retained when 

the values of AIC are compared, including 

constants that are not data dependent. This 

property of AIC is useful in applications where 

an appropriate distribution must be determined 

for the trait, in addition to the model size and 

structure. For this reason, AIC is ideally suited to 

generalized linear modeling applications 

(Cavanaugh and Neath, 2019). Three examples 

are presented below. 

The DHGLM package (Lee and Noh, 2018) 

in R presents the components of variance (cv) on 

the logarithmic scale. Thus, negative values for 

the estimates can occur. Then, it is necessary to 

use the antilogarithm or exponentiation (𝑒𝑐𝑣 =

2.7183𝑐𝑣) to obtain estimates on the natural scale. 

The analysis of y as Normal led to heritability 

higher than that provided by the Gamma 

distribution. However, statistically, in terms of 

lower value for cAIC, the Normal model was 

shown to have a poorer fit (𝑐𝐴𝐼𝐶 = 1470.57) 

than the Gamma model (𝑐𝐴𝐼𝐶 = 1447.39), 

suggesting that the Gamma model is better. The 

AIC can be used to compare non-nested models 

with different distribution assumptions, but with 

the same fixed effects structure. 

The analyses of y as Normal or Gamma led 

to the same heritabilities. As the cAIC was lower 

for the Gamma, this distribution is statistically 

selected. In fact, the diameter follows the 

Weibull distribution (special case of the Gamma 

distribution) (Rennolls et al., 1985) and not the 

Normal. It can be seen that the analysis of y as 

Binomial and Logit as link function led to greater 

heritability than y taken as Normal. 

The AIC cannot be used to compare 

models based on different transformations of the 

outcome trait: for example, Log versus Square 

Root. Then, this criterion cannot be used to select 

an optimal transformation.The objective of a 

good criterion is to identify the fitted candidate 

model that is closest to the generating model in 

the sense of Kullback-Leibler information. AIC 

provides an asymptotically unbiased estimator of 

the expected Kullback discrepancy (Cavanaugh 

and Neath, 2019). 

Example 1. Analysis of simulated data (y) using HGLMM with Normal and Gamma distributions. 

Source of Variation HGLMM-cv 𝒆𝒄𝒗 HGLMM-cv 𝒆𝒄𝒗 

Genotype 3.641 38.130 -3.514 0.030 

Plot 1.314 3.721 -5.405 0.004 

Residual 3.019 20.471 -3.958 0.019 

Total - 62.322 - 0.053 

𝒉𝟐 (heritability) - 0.61 - 0.56 

Distributions Normal Gamma 

Example 2. Analysis of stem diameter in Acacia(y) using HGLMM with Normal and Gamma distributions. 

Source of Variation HGLMM-cv 𝒆𝒄𝒗 HGLMM-cv 𝒆𝒄𝒗 

Genotype -4.097 0.017 -5.129 0.006 

Plot -2.962 0.052 -4.183 0.015 

Residual -1.426 0.240 -2.212 0.109 

Total - 0.308 - 0.131 

𝒉𝟐 (heritability) - 0.05 - 0.05 

Distributions Normal Gamma 
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Example 3. Analysis of survival data (0 and 1) in Acacia using HGLMM with Binomial data, Logit link 
function (Logistic distribution for the error or variable in latent scale) and Normal for random genotype and 
plot effects. 

Source of Variation HGLMM-cv 𝒆𝒄𝒗 HGLMM-cv 𝒆𝒄𝒗 

Genotype -5.498 0.004 -2.016 0.133 

Plot -4.664 0.009 -1.501 0.223 

Residual -1.761 0.172 0 1 

Total - 0.185 - 1.356 

𝒉𝟐 (heritability) - 0.02 - 0.10 

Distributions Normal Binomial 

 

 

Bayesian Information Criterion (BIC) 

Another approach is BIC (Schwarz, 1978), 

which is given by 

𝐵𝐼𝐶 = −2𝐿𝑜𝑔𝐿 + 𝑝𝐿𝑜𝑔 (𝑑), 

where 𝑑 = 𝑁 − 𝑟(𝑋) is the number of degrees of 

freedom of the residual; N is the total number of 

observations and 𝑟(𝑋) is the rank of the incidence 

matrix (X) of the fixed effects. The BIC is 

calculated for each model and the one with the 

lowest value (in at least 2 units, according to 

Neath and Cavanaugh, 2012) is chosen as the best 

model. It can also be used when the models have 

no hierarchical structure. However, the models 

must have the same fixed effects structure. 

Logically all LRT, AIC and BIC depend on the 

same basic quantity −2𝐿𝑜𝑔𝐿 = 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒. 

The AIC and BIC have the same goodness-

of-fit term, but the penalty terms differ on the 

manner in which the dimension p is incorporated: 

BIC employs a complexity penalization of 

𝑝𝐿𝑜𝑔(𝑑) as opposed to 2p. As a result, BIC tends 

to choose more parsimonious fitted models than 

those selected by AIC. The differences in 

selected models may be pronounced in large-

sample scenarios (Cavanaugh and Neath, 2019). 

Bayes Factor (BF) 

In the Bayesian framework, the analogous 

to LRT, AIC, SEP (Standard Error of Prediction) 

and Confidence Interval, are the BF, Bayesian 

DIC, Standard Deviation-MCMC (SD-MCMC) 

and Bayesian Credible Interval (BCI), 

respectively. Other option to BCI is the Highest 

Posterior Density (HPD). 

The Bayes Factor for comparing models 1 

and 2 can be approximated by 

𝐵𝐹12 ≈ 𝑒𝑥𝑝 [−(1 2⁄ )∆12], 

where ∆12= 𝐵𝐼𝐶1 − 𝐵𝐼𝐶2 (Neath and 

Cavanaugh, 2012). The strength of evidence in 

terms of BF can equivalently be stated in terms 

of BIC. Consider a comparison between models 

1 and 2, as quantified by the BIC difference ∆12, 

being the model 2 with the smaller value of BIC. 

As BIC approximates a transformation of a 

model’s posterior probability, one can perform 

model evaluation by transforming BIC back to a 

probability (Neath and Cavanaugh, 2012). 

Significant effects have a 𝐵𝐹 < 0.01, or 

𝐿𝑜𝑔𝑒𝐵𝐹 < 0, which provide decisive evidence 

against the model that considered an effect equal 

to zero. Additionally, no significant difference is 

detected with 𝐵𝐹 > 1. 

Good modelling must also take into 

account two relevant statistical principles: 

hierarchy and sparsity. According to the 

hierarchical principle the terms of lower order 

(main factors and double interactions) are 

generally more important than those of larger 

order (triple interaction, etc.). Higher order 

interaction generally contributes little to the 

explanation of a phenomenon and should not be 

included in the model. Sparsity refers to 

statistical parsimony, according to which few 

terms explain most of the information and the 

model must be kept as simple as possible. 
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Comparison and selection between 
statistical models with different factors 
of fixed and random effects via REML 

and Full ML (FML) 

In the generic model 

𝑦 = 𝑋𝑏 + 𝑍𝑔 + 𝑒, 

where y is the vector of the data, b is the vector 

of the fixed effects, g is the vector of the random 

effects, e is the vector of residuals; X and Z are 

the incidence matrices for b and g, respectively; 

and 𝑉 = 𝑉𝑎𝑟(𝑦) is the variance-covariance 

matrix of the vector of data y. 

The difference between the deviances of 

two models with different fixed effects does not 

provide an adequate statistical test for random 

effects. This is due to the fact that the Residual 

Likelihood (function of 𝑦 − 𝑋𝑏) is maximized 

and not the likelihood of the original data 

(function of y, the Full Likelihood). Residual 

Likelihood (RL) refers to the likelihood of data 

after projection into the residual space and, 

therefore, two different models regarding fixed 

effects refer to two different projections and, 

consequently, correspond to different datasets (as 

if they were different variables) in which the 

same random factors are estimated. 

In the REML method, only the portion of 

the likelihood that is invariant to the fixed 

effects (specified in vector b) is maximized. 

Thus, the components of variance are estimated 

without being affected by the fixed effects of the 

model and the degrees of freedom referring to 

the estimation of the fixed effects are 

considered, producing unbiased estimates. The 

REML method divides the data into two parts: 

contrasts of fixed effects; and error contrasts 

(that is, all contrasts with zero expectation) 

which contain information only about the 

components of variance. Only the contrasts of 

errors [full residuals (𝑦 − 𝑋𝑏)] are then used to 

estimate the components of variance, since they 

contain all available information about the 

variance parameters. This is done by projecting 

the data into the residual space or vector space 

of the error contrasts. The projected data has 

LogL given by: 

−2𝑅𝐿 = [𝑁 − 𝑟(𝑋)]𝐿𝑜𝑔2𝜋 − 𝐿𝑜𝑔|𝑋′𝑋| +

𝐿𝑜𝑔|𝑋′𝑉−1𝑋| + 𝐿𝑜𝑔|𝑉| + (𝑦 − 𝑋𝑏̂)
′
𝑉−1(𝑦 −

𝑋𝑏̂), 

where N is the number of observations and 𝑟(𝑋) 

is the rank of the fixed effects incidence matrix. 

The variance components are then estimated by 

maximizing the logarithm of the RL function of 

the projected data (Resende, 2007a; Resende et 

al., 2014). The LogL of the original data (Full 

Likelihood) is given by: 

−2𝐹𝐿 = 𝑁𝐿𝑜𝑔2𝜋 + 𝐿𝑜𝑔|𝑉| + 

(𝑦 − 𝑋𝑏)′𝑉−1(𝑦 − 𝑋𝑏). 

The RL function has additional terms in 

relation to Full Likelihood (FL). The only 

additional relevant term for the estimation of 

variance components is 𝐿𝑜𝑔|𝑋𝑉−1𝑋|, which 

effectively removes the degrees of freedom used 

in estimating fixed effects. This difference 

between RL and FL exactly reflects the 

difference between REML and ML (Resende, 

2007a; Resende et al., 2014). Ignoring the 

constant terms, we have 

𝑅𝐿 = −(1 2⁄ )𝐿𝑜𝑔|𝑋𝑉−1𝑋| − (1 2⁄ )𝐿𝑜𝑔|𝑉| − 

(1 2⁄ )(𝑦 − 𝑋𝑏̂)
′
𝑉−1(𝑦 − 𝑋𝑏̂)  

and 

𝐹𝐿 = −(1 2⁄ ) 𝐿𝑜𝑔|𝑉| − 

(1 2⁄ )(𝑦 − 𝑋𝑏)′𝑉−1(𝑦 − 𝑋𝑏). 

For the comparison between models with 

different fixed effects structures, FL should be 

used, which can then be computed from REML by 

𝐹𝐿∗ = 𝑅𝐿 − (1 2⁄ ) 𝐿𝑜𝑔|(𝑋𝑉−1𝑋)−1| (Verbyla, 

2019). It follows the tests of random and fixed 

effect factors in some situations (S), where FL is 

Full Likelihood and RL is Residual Likelihood. 
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Random effect factors testing 

S1 

Random effects (g) in nested 
models, with the same fixed 

effects and the same distribution 
for y: LRTRL, AICRL, BICRL 

Model 1: 𝑦 =  𝑋𝑏 +  𝑍𝑔 +  𝑒 

Model 2: 𝑦 =  𝑋𝑏 +  𝑒’ 
𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =  −2𝐿𝑜𝑔𝑅𝐿 

𝐿𝑅𝑇𝑅𝐿 = 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 𝑚𝑜𝑑𝑒𝑙 2 –  𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 𝑚𝑜𝑑𝑒𝑙 1 

S2 

Random effects (g) in non-nested 
models with the same fixed effects 

and the same distribution for y: 
AICRL, BICRL 

Model 1: 𝑦 =  𝑋𝑏 +  𝑍𝑔 +  𝑒, 
with relationship matrix A for example 

Model 2: 𝑦 =  𝑋𝑏 +  𝑍𝑔’ +  𝑒’, 
with relationship matrices G or H for example 

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =  −2𝐿𝑜𝑔 𝑅𝐿 

S3 

Random effects (g) in nested 
models with different fixed effects 
and same distribution for y: AICFL, 

BICFL 

Model 1: 𝑦 =  𝑋𝑏 +  𝑍𝑔 +  𝑒 

Model 2: 𝑦 =  𝐽𝑢 +  𝑒’ 
𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =  −2𝐿𝑜𝑔 𝐹𝐿 

S4 

Random effects (g) in non-nested 
models with different fixed effects 

and same distributions for y: 
AICFL, BICFL 

Model 1: 𝑦 =  𝑋𝑏 +  𝑍𝑔 +  𝑒, 
with relationship matrix A for example 

Model 2: 𝑦 =  𝐽𝑢 +  𝑍𝑔’ +  𝑒’, 
with relationship matrices G or H for example 

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =  −2𝐿𝑜𝑔 𝐹𝐿 

S5 

Random effects (g) in nested 
models, with the same fixed 

effects and different distributions 
for y: LRTRL, AICRL, BICRL 

Model 1: 𝑦 =  𝑋𝑏 +  𝑍𝑔 +  𝑒 

Model 2: ϒ =  𝑋𝑏 +  𝑒’ 
𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =  −2𝐿𝑜𝑔 𝑅𝐿 

𝐿𝑅𝑇𝑅𝐿 = 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 𝑚𝑜𝑑𝑒𝑙 2 –  𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 𝑚𝑜𝑑𝑒𝑙 1 
 

Fixed effects factor testing 

S6 

Fixed effects in nested models 
with different fixed effects, same 

random effects and same 
distributions for y: LRTFL, 

AICFL, BICFL 

Model 1: 𝑦 =  𝑋𝑏 +  𝑍𝑔 +  𝑒 
Model 2: 𝑦 =  𝐽𝑢 +  𝑍𝑔 +  𝑒’ 

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =  −2𝐿𝑜𝑔 𝐹𝐿 
𝐿𝑅𝑇𝐹𝐿  =  𝐷𝑒𝑣2 –  𝐷𝑒𝑣1 

S7 

Fixed effects in nested or not 
models, with different fixed 

effects, different random effects 
and same distributions for y: 

LRTRL, AICFL, BICFL 

Model 1: 𝑦 =  𝑋𝑏 +  𝑍𝑔 +  𝑒 
Model 2: 𝑦 =  𝐽𝑢 +  𝑒’ 

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =  −2𝐿𝑜𝑔 𝐹𝐿 
𝐿𝑅𝑇𝐹𝐿 =  𝐷𝑒𝑣2 –  𝐷𝑒𝑣1 

 

 

Definition of fixed or random effects 
by analytical approach using FML 

An analytical approach can be used to 

define fixed or random effects. An experimental 

example evaluating genotypes (g) in a complete 

block design, with five replicates single-tree 

plots is shown below. The following criteria are 

considered: LRT (item 1), AIC (item 2), BIC 

(item 3) and BF (item 4). 

Three types of effects were compared for 

the block effects (b): null (CRD - Completely 

Randomized Design), random (CBD-R-Comple-

tely Block Design-Random) and fixed (CBD-F-

Completely Block Design-Fixed). In the model 

for phenotypes (y), u is the general mean and e is 

the vector of random errors. The quantities vc and 

fe are the numbers of variance components and 

of fixed effects, respectively. 

Results are presented for REML and FML 

(Full Maximum Likelihood). FML is the adequate 

approach to be used for comparing these models 

with different fixed effects of blocks. In the case 1 

we conclude that the best approach (CBD-F-

FML) is to consider the block effects as fixed 

(lower deviance of 626.8).If the REML approach 
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were to be considered the selected approach 

(CBD-R-REML) would be take the block effects 

as random (lower deviance of 646.29). That would 

lead to the wrong inference for block effects and 

wrong choice of the model. This emphasizes the 

importance of using the new FML approach. The 

same procedure can be used also for the genotype 

effects. 

Using the AIC criterion (case 2) the same 

(block as fixed effects) conclusions can be made. 

The best model and effects assigned are provided 

by the FML approach. The lower AIC is 649.5. For 

the BIC criterion (case 3) a different (block as ran-

dom effects) conclusion was inferred. The lower 

BIC was 669.0, as provided by FML approach.  

For the BF criterion (case 4) we can see 

that, for the FML approach, all BF contrasts were 

significant. So, all models differ one from 

another. And the best model choice is as inferred 

by the BIC criterion, which is to take block 

effects as random. The BIC criterion may be the 

best choice as it provides a statistical formal test 

(BF) for the effects. 

The conclusion for this example is to take 

block as random effects. Such a choice comes 

from (item 3) the fact that BIC model 2 shows 

lower value than that for BIC model 1 and BIC 

model 3, with difference between them higher 

than 2; and these differences were significant by 

the BF test (item 4). 
 

1 DEV Design Model DEV Number of parameters 

REML-DEV 

CRD-REML y=Xu+Zg+e 672.37 2 vc 

CBD-R-REML y=Xu+Zg+Wb+e 646.29 3 vc 

CBD-F-REML y=Xb+Zg+e 654.13 2 vc + 5fe 

FML-DEV 

CRD-FML y=Xu+Zg+e 666.1 2 vc 

CBD-R-FML y=Xu+Zg+Wb+e 641.5 3 vc 

CBD-F-FML y=Xb+Zg+e 626.8 2 vc + 5fe 
 

2 AIC Design Model AIC Number of parameters 

REML-AIC 

CRD-REML y=Xu+Zg+e 678.4 2 vc 

CBD-R-REML y=Xu+Zg+Wb+e 654.3 3 vc 

CBD-F-REML y=Xb+Zg+e 668.1 2 vc + 5fe 

FML-AIC 

CRD-FML y=Xu+Zg+e 672.1 2 vc 

CBD-R-FML y=Xu+Zg+Wb+e 649.5 3 vc 

CBD-F-FML y=Xb+Zg+e 640.8 2 vc + 5fe 
 

3 BIC Design Model BIC N-r(X) Number of parameters 

REML-BIC 

CRD-REML y=Xu+Zg+e 693.0 975-1 2 vc 

CBD-R-REML y=Xu+Zg+Wb+e 673.8 975-1 3 vc 

CBD-F-REML y=Xb+Zg+e 702.3 975-5 2 vc 

FML-AIC 

CRD-REML y=Xu+Zg+e 686.7 975 2 vc + 1fe 

CBD-R-REML y=Xu+Zg+Wb+e 669.0 975 3 vc + 1fe 

CBD-F-REML y=Xb+Zg+e 675.0 975 2 vc + 5fe 
 

4 Bayes 
Factor (BF) 

Design Model ∆ ∆̂ 𝒎 = −(𝟏 𝟐⁄ ) 𝑩𝑭 ≈ 𝒆𝒙𝒑(𝒎) 

REML-BIC 

CRD-REML y=Xu+Zg+e BIC1-BIC2 19.2 -9.6 7 x 10-5 

CBD-R-REML y=Xu+Zg+Wb+e BIC3-BIC2 28.5 -14.25 6 x 10-7 

CBD-F-REML y=Xb+Zg+e BIC1-BIC3 -9.3 4.65 104. 6 

FML-BIC 

CRD-FML y=Xu+Zg+e BIC1-BIC2 17.7 -8.85 1 x 10-4 

CBD-R-FML y=Xu+Zg+Wb+e BIC3-BIC2 6.0 -3 5 x 10-2 

CBD-F-FML y=Xb+Zg+e BIC1-BIC3 11.7 -5.85 2.9 x 10-3 
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Accuracy comparison between 
Bayesian and Fisherian statistical 

models 

The Bayesian accuracy could be estimated 

by using the same formula used in likelihood 

analyses, using the squared SD-MCMC instead 

of PEV. However, that approach is not perfect. 

For balanced dataset the accuracy of all 

individuals should give the same value. Using 

one example with 39 families, the Bayesian 

accuracy ranged from 0.43 to 0.70, with average 

of 0.68, mode of 0.70 and range of 0.27. 

In this analysis the degrees of freedom (df) 

for prior distributions of variance components was 

2 (which gives non-informative priors and then 

reproduces the REML analysis) and there was 

convergence (by the Geweke criterion) for all 

estimated genetic values and variance components, 

after using the MCMCglmm package (Hadfield, 

2010) in R. Results are shown below. 
 

Accuracy REML/BLUP MCMC0.002 MCMC1 MCMC2 MCMC4 MCMC7 

Minimum 0.67 Negative 0.33 0.43 0.49 0.54 

Mean 0.67 0.66 0.67 0.68 0.68 0.68 

Mode 0.67 0.69 0.70 0.70 0.69 0.69 

Maximum 0.67 0.70 0.70 0.70 0.70 0.70 

Mean error 0.00 0.04 0.03 0.03 0.02 0.02 

Standard deviation 0.00 0.06 0.05 0.05 0.03 0.02 

Range 0.00 - 0.27 0.27 0.21 0.15 

0.002, 1, 2, 4 and 7: degrees of freedom. 

 

The REML/BLUP and BLUP under 

MCMC estimates of variance parameters 

(MCMC/BLUP) analyses gave the results 

shown below. 

Parameter 
REML/ 
BLUP 

MCMC/ 
BLUP0.002 

MCMC/ 
BLUP1 

MCMC/ 
BLUP2 

MCMC/ 
BLUP4 

MCMC/ 
BLUP7 

Deviance 640.62 640.73 640.67 640.67 640.67 640.67 

AIC 646.62 646.73 646.67 646.67 646.67 646.67 

Genetic variance 0.033 0.029 0.034 0.034 0.035 0.029 

h2 0.046 0.040 0.046 0.047 0.048 0.040 

c2 0.095 0.097 0.093 0.094 0.095 0.098 

SEP 0.135 0.130 0.136 0.136 0.137 0.137 

PEV 0.018 0.017 0.018 0.019 0.019 0.019 

Accuracy 0.670 0.645 0.673 0.678 0.679 0.680 

Bias 1.66 1.68 1.65 1.65 1.65 1.65 

0.002, 2, 4 and 7: degrees of freedom. 

 

For degrees of freedom (df) equal to 1, 2, 4 

and 7 very close results were obtained for 

accuracy, AIC, bias and other parameters. The 

advantage of estimating Bayesian accuracy like 

this is the unique value obtained for accuracy of 

all individuals. MCMC/BLUP analyses can also 

be used for searching for better priors that could 

produce better results in terms of accuracy, i.e., 

allowing testing for informative priors. 

This was tried, and the results showed 

that, in this case, using REML variance 

components as prior, no informative prior could 

be find other than that with 2 degrees of 

freedom. The results showed accuracies 

estimates of 0.65, 0.67, 0.68 and 0.68, for 

degrees of freedom 0.002, 1, 4 and 7, 

respectively. The last three values are very close 

to the 0.67 obtained with REML/BLUP. 
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This approach (MCMC/BLUP) is 

recommended for calculating accuracies in 

Bayesian analyses. The rationale for using this is 

the search for a Genuine BLUP in place of 

Empirical BLUP. Genuine BLUP is achieved 

when the parameters of the true model are known 

and used. In such a case, the Empirical BLUP 

would be replaced by the Genuine one. Genuine 

BLUP is unbiased, precise and has maximum 

accuracy. One way of seeking for that is the 

evaluation of the traditional BLUP machinery 

(Henderson mixed model equations) under 

parameters obtained by other approaches that can 

allow accessing the true model closely (Harville, 

2008; Witkovský, 2012). MCMC/BLUP produces 

both adequate accuracy and opportunity to test of 

new prior distribution. It is also the only way to 

estimate corrected values for accuracy. 

The approach of using the Bayesian 

standard deviation of the estimated breeding 

values to get accuracy, provides incorrect 

estimates for accuracy of every individual. And 

with 0.002 df even negative value of accuracy 

was obtained. 

Another approach for computing the 

Bayesian accuracy was proposed by Resende et 

al. (2012a; 2014) and applied by Volpato et al. 

(2019) showing coherent and consistent results. 

The formula is given by 𝑟𝑔̂𝑔 = 1 − 𝑠(𝑔) 𝑔⁄ , 

where 𝑠(𝑔) is the standard deviation of the 

estimated genetic value 𝑔. Other alternative is to 

use 𝑟𝑔̂𝑔 = 1 − 𝑠(𝑔) 𝜎𝑔⁄ , where 𝜎𝑔 is the squared 

root of the Bayesian estimate of the genetic 

variance, which is constant for all individuals in 

the population. 

Genomic selection 

Genomic Wide Selection (GWS) or 

genomic selection (GS) was proposed by 

Meuwissen et al. (2001) as a way to increase 

efficiency and accelerate the genetic 

improvement. GWS emphasizes the simultaneous 

prediction (without the use of significance tests 

for individual markers) of the genetic effects of 

thousands of genetic DNA markers (SNP) 

dispersed throughout the genome of an organism, 

in order to capture the effects of all loci (both of 

small and large effects) and explain all the genetic 

variation of a quantitative trait. Meuwissen et al. 

(2001) developed the SNP-BLUP procedure using 

the method RR-BLUP, BayesA and BayesB. The 

Ridge-Regression (RR) was already used by 

Whittaker et al. (2000) for marker selection. Haley 

and Visscher (1998) had already suggested the 

name genomic selection for selection in a whole 

genome scale. 

An ideal method for SNP effects estimation 

in GWS should include three attributes: accom-

modate the genetic architecture of the trait in 

terms of genes of small and large effects and their 

distributions; regularize the estimation process in 

the presence of multicollinearity and a larger num-

ber of markers than individuals, using shrinkage 

estimators; perform the selection of covariables 

(markers) that affect the trait under analysis. 

The main problem with GWS is the 

estimation of a large number of effects from a 

limited number of observations and also the 

collinearities arising from the linkage 

disequilibrium between the markers. Shrinkage 

estimators deal with this appropriately, treating 

the effects of markers as random variables and 

estimating them simultaneously (Resende, 

2007a; Resende, 2008; Azevedo et al., 2015). 

If the effects of markers are taken as fixed, 

it is not possible to consider the covariance 

between effects of markers. With a high density 

of markers, more than one marker will be in 

linkage disequilibrium with a segregating QTL. 

This will result in covariance between marker 

effects. Most markers will have no effect on a 

trait. Thus, the estimated effects of these empty 

markers will be false. This problem is greater in 

the case that the markers are considered to have 

fixed effects, because in that case, these pseudo 

effects will not be shrunk towards zero. 

The traditional Quantitative Genetics rely 

on random mating population. Nowadays, with 

the availability of SNP markers, random mating 

does not need to be assumed, because breeders 

can track the transmission of chromosomal 

segments. Another assumption is linkage equili-

brium in the breeding population. Once linkage 

among markers is accounted for in the G 

relationship matrix in RR-BLUP, this circumvent 

the need to assume linkage equilibrium. 
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The main methods for GWS are based on 

Random Regression and can be divided into three 

major classes: explicit, implicit and dimensionally 

reduced regression. In the first class, the methods 

RR-BLUP, Lasso, BayesA and BayesB, among 

others, stand out. In the class of implicit regression, 

the method RKHS (Reproducing Kernel Hilbert 

Spaces) is most popular and is a semi-parametric 

method. Among the regression methods with 

dimensional reduction, stand out the Independent 

Components, Partial Least Squares and Principal 

Components. Two new non-parametric approaches 

for GWS were proposed by Resende (2015) and 

Lima et al. (2019a,b). These methods are called 

triple categorical regression (TCR) and Delta-p and 

proved to be efficient. 

The explicit regression methods are 

divided into two groups: (i) penalized estimation 

methods (RR-BLUP, Lasso); (ii) Bayesian esti-

mation methods (BayesA, BayesB, fast BayesB, 

BayesCπ, BayesDπ, Bayesian regression, 

BayesR, BayesRS, Blasso, IBlasso and others). 

The best and most effective in practice are RR-

BLUP (via G-BLUP single step) and BayesB 

(Mrode et al., 2010; Mrode, 2014; Visscher et al., 

2006; 2008; 2010). Each method without 

covariate selection has its similar with covariate 

selection. Thus, there are the pairs without and 

with selection: BayesA - BayesB; BRR - 

BayesCπ; Blasso - IBlasso. 

The RR-BLUP is an equivalent model to G-

BLUP, which is the BLUP method at individual 

level with the genealogical relationship matrix A 

changed to a genomic relationship matrix G. The 

equivalence between these two methods was 

given by Habier et al. (2007) and also by Van 

Raden (2008). The G-BLUP and RR-BLUP are 

equivalent when the number of QTL is large and 

no major QTL is present. The use of the matrix G 

based on markers was already used by Bernardo 

(1994), Nejati-Javaremi et al. (1997) and 

Fernando (1998). 

A single-step BLUP using simultaneously 

phenotypic, genotypic and genealogical informa-

tion, called H-BLUP single-step, was proposed by 

Misztal et al. (2009), using an H matrix composed 

by the A and G matrices. The idea of the H-BLUP 

was already given by Fernando (1998). 

The cut-off point for including a marker in 

the analysis can be given by 𝑀𝐴𝐹 = (1 2𝑁⁄ )1 2⁄ ; 

this comes from the standard deviation of a 

proportion, given by(𝑝𝑞)1 2⁄ (2𝑁)1/2⁄ , where N 

is the number of genotyped individuals, meaning 

that the lower N the greater needed to be the MAF 

for accurate estimation of the marker effect 

(Resende, 2015). 

A refinement of genomic selection can be 

achieved by using QTNs instead of SNPs. The 

evolution of genomic technology is predictable 

and the causal mutation of a genetic variation at 

the nucleotide level (QTN) could be accessed in 

the near future. Thus, genomic selection can be 

improved by the direct use of QTNs instead of 

SNPs. 

The use of QTNs will bring the following 

advantages (Weller, 2016): GWS will not depend 

on the linkage disequilibrium as the QTN will be 

accessed directly and not via markers, this will 

increase the durability of the genomic prediction, 

which will also be useful in the long run; the 

genomic prediction may have validity 

(transferability) across different populations and 

species in the same genus; the genomic 

prediction will use specific QTNs for each trait, 

unlike G-BLUP via SNPs, which uses the same 

G relationship matrix for all traits; the multiple-

trait selection indexes will directly weight the 

QTNs and not the phenotypic traits; genomic 

selection may use a smaller number of 

generations (only the last ones) for the 

composition of G matrix, this will bring greater 

genetic gain and less mass of data to be 

processed; the allele frequencies of the QTNs 

will be accessed directly and not via linkage 

disequilibrium with SNPs. 

Analytical statistics 

In general, a complete statistical analysis 

encompasses the following activities: the model 

selection; the estimation/prediction of components 

of means (genotypic values); the estimation of 

components of variance (genotypic variability); the 

application of hypothesis tests; the inferences on 

accuracy (square root of the reliability of the selec-

tion); the inferences on bias; and the inferences on 

estimation/prediction precision (Resende, 2007b). 
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For example, in the context of mixed models, 

performing these activeties involves BLUP 

predicttion, REML estimation, deviance analysis, 

computation of prediction accuracy and prediction 

error variance, respectively. In the REML/BLUP 

procedure, the bias is assumed to be null, as these 

estimators/predictors belong to the class of the Best 

Linear Unbiased Estimators/Predictors (BLUE/ 

BLUP). In the scientific articles, the results from 

these activities should be interpreted and discus-

sed. In the genetics area the following route can 

be followed. 
 

Model selection 

The best biological/statistical model should be selected by comparing several 
candidate models, based on information criteria, disparity measures or statistical 
distances between probability distributions or models (contrasts between data 
generating and candidate models). This activity is the first one and is essential, 
meaning that the best individual cannot be selected from the wrong model. 
Commonly used information criteria are the Kullback-Liebler (KL), Akaike (AIC) 
and Bayesian (BIC, which is related to the Bayes Factor). 

Hypothesis tests 
Inferences on significance of the genetic variability (σg

2), by the deviance analysis 

(LRT) or F test from Analysis of Variance in the balanced case. 

Variance 
components 

Their proportions allow inferences on genetic control, heritabilities, repeatability, ge 
interaction, correlations between traits and coefficients of variation. 

Components of 
means 

They provide information on genetic values and genetic gain with selection. 

Precision of the 
prediction 

PEV (prediction error variance), from which we can calculate the relation PEV σg
2⁄  

(with parameter space between 0 and 1) and also the value of F = σg
2 PEV⁄ . This 

comes from the squared accuracy estimator rĝg
2 = 1 − (PEV σg

2⁄ ) = 1 − (1 F⁄ ). For 

a fixed effects model, rĝg
2 = 1 − (1 F⁄ ) has a connotation of an adjusted 

determination coefficient, which is similar to a broad sense heritability at genotype 
mean level (reliability). 

Accuracy of the 
prediction 

Correlation between predicted and true genotypic values, with parameter space 
between 0 and 1. 

Bias of the 
prediction 𝒚̂ 

given as a function of the regression [β(y, ŷ)] of data y on ŷ, where β = 1 is the ideal 
and indicates no contribution of the angular coefficient β to bias. In this sense, 
comparisons of the models should be based on the modulus of [1 − β(y, ŷ)]. 

 

Genotype selection 

The genetic selection should be based on 

BLUE, BLUP, HG-BLUE, HG-BLUP or 

COND-MOD in the context of the random and 

mixed effects models. For the selection of 

genotypes in the context of fixed effects models, 

multiple comparison should be done by the 

Newman-Keuls test and not by Tukey. The 

Newman-Keuls test has much higher power and 

type I error rates similar to the Tukey test. Thus, 

the t-test, Duncan and Tukey, widely used in 

Brazil, are not the most recommended and should 

only be used with cautions. The Newman-Keuls 

test, little used in Brazil, is highly recommended 

in view of the favorable rates of type I error, the 

relative high power and the intermediate rigor. 

Thus, it can be used without much care. In reality, 

this test has been widely used (in detriment of the 

others) by the French researchers and also in 

perennial plant improvement in African 

countries. French literature adopts the Newman-

Keuls test as a standard in place of Tukey test. 

Example of calculus is presented in Resende 

(2002; 2007a). 

Apart from this, the statistical machinery 

for doing all the analyses is the mixed model 

methodology by REML/BLUP, HIML/HG-

BLUP and Bayesian estimation (Blasco, 2001; 

Sorensen and Gianola, 2002; Resende et al., 

2014; 2018). The Selegen REML/BLUP 

Software (Resende, 2016), ASReml Software 

(Gilmour et al., 2015), Echidna Mixed Model 

Software (Gilmour, 2019) and some R packages 

(R Development Core Team, 2018) can be used. 
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In genetics, studies on diversity (genetic 

relationship coefficients, inbreeding coefficients, 

effective population size (𝑁𝑒), entropy, genetic 

distances and multivariate clusters) complement 

the inferences (Resende, 2015). 

Sample size and accuracy 
in plant breeding 

Experimental quality and 
selective accuracy 

The quality of the genotypic evaluation 

should preferably be inferred based on accuracy 

(𝑟𝑔̂𝑔). In balanced experiments, Snedecor’s F 

statistics can also be used, as shown in the table 

presented by Resende and Duarte (2007). Being 

𝑟𝑔̂𝑔 = (1 − 1 𝐹⁄ )1 2⁄ , the mathematical expres-

sion that relates the appropriate values of F to the 

required accuracy, is given by: 𝐹 =

1 (1 − 𝑟̂𝑔̂𝑔
2 )⁄ . To achieve an accuracy of 90%, an 

F value equal to 5.26 must be pursued. Thus, this 

should be a reference value in experiments for 

evaluating VCU tests. This value is independent 

of the species and trait evaluated and can be 

considered as a standard value for any species. 

This statistic contemplates, simultaneously, the 

coefficient of experimental variation (𝐶𝑉𝑒), the 

number of replications (n) and the coefficient of 

genotypic variation (𝐶𝑉𝑔). The expression 𝐹 =

1 + (𝑛𝐶𝑉𝑔
2 𝐶𝑉𝑒

2⁄ ) shows this. Although 

traditionally used to evaluate experimental 

quality, the coefficient of experimental variation 

alone is not adequate for this. The three 

parameters are necessary, because the accuracy 

depends on them simultaneously, as can be seen 

by the alternative expression  

𝑟̂𝑔̂𝑔 = {1 [1 + (𝐶𝑉𝑒
2 𝐶𝑉𝑔

2⁄ ) 𝑛⁄ ]⁄ }
1 2⁄

. 

For the selection process in breeding 

programs, accuracy values above 70% should be 

pursued. This is equivalent to F values 

approximately greater than 2. Therefore, F 

values less than 2 provide low selective accuracy. 

Another statistic commonly calculated in 

the context of genotypic evaluation, as proposed 

by Vencovsky (1987), is the coefficient of 

relative variation (𝐶𝑉𝑟 = 𝐶𝑉𝑔 𝐶𝑉𝑒⁄ ). By fixing the 

number of replications or individuals per 

treatment, the 𝐶𝑉𝑟 magnitude can be used to infer 

about the accuracy and precision in the genotypic 

evaluation. With 𝑛 =  2, a 𝐶𝑉𝑟 > 1 provides 

high accuracy. 

In terms of individual (perennials) or plot 

(annuals) h², F is given by 𝐹 =

1 + 𝑛ℎ2 (1 − ℎ2)⁄ , and 𝐹 = 5.2632 is achieved, 

for example, with 𝑛 = 6.39, for ℎ2 = 0.4. It can 

be inferred that with ℎ2 = 0.4, and 𝑛 = 6  

provides high accuracy. 

Required sample sizes for 
treatments effects detection 

High reliability and accuracy can be 

achieved by using adequate number of 

replications or individuals (n) per treatment and 

of repeated measures (m). This should be 

determined according to the heritability (ℎ2) and 

repeatability (𝜌) of the traits. The quantities n and 

m can be given by 

𝑛 = 𝑟𝑔̂𝑔
2 (1 − ℎ2) [ℎ2(1 − 𝑟𝑔̂𝑔

2 )]⁄  

and 

𝑚 = 𝑟𝑓𝑓
2 (1 − 𝜌) [𝜌(1 − 𝑟𝑓̂𝑓

2 )]⁄ , 

where 𝑟𝑔̂𝑔
2  and 𝑟𝑓̂𝑓

2  are the reliabilities (squared 

accuracy) of genetic and phenotypic values, 

respectively. For a trait with ℎ2 = 0.20 and 𝜌 =
0.40, n should be 4 and 17, and m should be 2 

and 7, for a targeted accuracy of 70% and 90%, 

respectively. The number of replications can also 

be given by 𝑛 = (𝐹 − 1)(1 − ℎ2) ℎ2⁄ , where F 

is 5.26 for a desired accuracy value of 𝑟𝑔̂𝑔 =

0.90 (Resende and Duarte, 2007). 

Statistical books provide the general 

expression to calculate the required sample size 

(n) which is 𝑛 = [(𝑧𝛼 + 𝑧𝛽)
2

𝜎𝐷
2] 𝛿2⁄ , where 

𝑧𝛼 and 𝑧𝛽 are values of the accumulated 

distributions function of type I (α) and type II (β) 

errors, under unilateral hypothesis tests; 𝜎𝐷
2 is the 
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variance of the difference between two treat-

ments means; and 𝛿 is the size of the real 

difference between two means which are 

intended to be declared as significant. 

The quantity (1 − 𝛽) is the probability 

(power) that the experiment shows a significant 

difference between treatments means. Powers of 

80% and 90% are common and adequate in 

practice. The variance of 𝜎𝐷
2 is function of the 

residual variance (given as a function of 1 − ℎ2) 

and 𝛿2can be taken as the squared contrast 

between one effect and the zero point of mass 

(given as a function of ℎ2). Wearden (1959) used 

something similar to this. Comparing 𝑛 =

(𝑧𝛼 + 𝑧𝛽)
2

(1 − ℎ2) ℎ2⁄  with 𝑛 =

(𝐹 − 1)(1 − ℎ2) ℎ2⁄  given before, we have 

(𝐹 − 1) = (𝑧𝛼 + 𝑧𝛽)
2

= 𝑁𝐶𝑃, which is the non-

centrality parameter. Values of (𝑧𝛼 + 𝑧𝛽)
2
 were 

given by Snedecor and Cochran (1967) as below: 

(𝟏 − 𝜷) 
Unilateral tests (𝒛𝜶 + 𝒛𝜷)

𝟐
 

significance level  

0.01 0.05 0.1 

0.80 10.0 6.2 4.5 

0.90 13.0 8.6 6.6 

0.95 15.8 10.8 8.6 
 

With 𝛼 = 5% and 𝛽 = 90%, 𝑁𝐶𝑃 = 8.6 and 

𝐹 = 9.6. So, 𝑟𝑔̂𝑔
2 = 0.90 and 𝑟𝑔̂𝑔 = 0.95; with 

𝛼 = 5% and 𝛽 = 80%, 𝑁𝐶𝑃 = 6.2 and 𝐹 =

7.2. So, 𝑟𝑔̂𝑔
2 = 0.86 and 𝑟𝑔̂𝑔 = 0.93; and with 

𝛼 = 5% and 𝛽 = 80%, 𝑁𝐶𝑃 = 4.5 and 𝐹 =

5.5. So, 𝑟𝑔̂𝑔
2 = 0.82 and 𝑟𝑔̂𝑔 = 0.91. In this way, 

an accuracy of 90% is associated with α equal to 

10% and β equal to 80%, among other 

combinations of α and β. A summary of these 

results is presented in Table 8. 

Table 8. Significance level and power of t test associated with required accuracy levels of 0.90, 0.93 and 0.95. 

Accuracy 
(𝒓𝒈̂𝒈) 

𝒓𝒈̂𝒈
𝟐  Significance 

(Type I Error: α) 
Confidence 

(1-α) 
Power 
(1-𝛽) 

Type II 
Error (𝛽) 

F test 

0.91 0.82 0.10 0.90 0.80 0.20 5.5 

0.93 0.86 0.05 0.95 0.80 0.20 7.2 

0.95 0.90 0.05 0.95 0.90 0.10 9.6 

 

It can be seen that to perform an 

experiment with desired power of the F-test of 

0.90 and significance of 0.05 we should seek for 

an accuracy of 0.95. In this case, the probability 

of detecting a true difference among genotypes is 

0.90, when the significance level is set at 0.05. 

There is a closeness between accuracy and 

confidence level, as expected. Also, a relation 

between power and coefficient of determination 

(𝑟𝑔̂𝑔
2 ) seems to hold, for such high accuracy 

values. The coefficient of determination is also 

called proportional reduction of error and is more 

a measure of coincidence proportion, hits or 

rightness (Linder, 1951). 

Sample size for genomic 
selection 

Genomic data are especially useful for 

genomic selection (GS), which allow selecting at 

plantlet stage aiming genetic gain in the adult 

stage (Resende et al., 2008; Grattapaglia and 

Resende, 2011). With GS: 

𝑟𝑔̂𝑔
2 = 𝑛ℎ2 (𝑛ℎ2 + 𝑛𝑄𝑇𝐿)⁄ =

 𝑛ℎ2 (𝑛ℎ2 + 𝑀𝑒) =⁄ 𝑛ℎ2 (𝑛ℎ2 + 2𝑁𝑒𝐿)⁄ =

𝑛ℎ2 (𝑛ℎ2 + 𝐿 𝐹⁄ )⁄ , 

where n is the number of genotyped and 

phenotyped individuals, L is the genome size (in 

Morgans) species, Me is the effective number of 

chromosome segments, Ne is the population 

efective number and F is the inbreeding 

coefficient of the population. For a desired 𝑟𝑔̂𝑔
2 , 

ℎ2 and 𝑛𝑄𝑇𝐿, n can be determined. 

Classification and interpretations 

Classification of the accuracy magnitudes 

is given in Table 9. Accuracy is linked to trait 

heritability. A classification of additive 

heritability and accuracy in terms of magnitude 

and their associations is presented in Table 10 

(Resende, 1997). 
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Table 9. Adequate values of the Snedecor F statistics, for the genetic effects (cultivars), aiming to achieve a 
certain accuracy, and the categories of required precision in the genotypic evaluation. 

Accuracy 
Accuracy 
categories 

F value Accuracy 
Accuracy 
categories 

F value 

0.99 Very high 50.2513 0.65 Moderate 1.7316 

0.975 Very high 20.2532 0.60 Moderate 1.5625 

0.95 Very high 10.2564 0.55 Moderate 1.4337 

0.90 Very high 5.2632 0.50 Moderate 1.3333 

0.85 High 3.6036 0.40 Low 1.1905 

0.80 High 2.7778 0.30 Low 1.0989 

0.75 High 2.2857 0.20 Low 1.0417 

0.70 High 1.9606 0.10 Low 1.0101 

Source: (Resende and Duarte, 2007). 

Table 10. Individual additive heritability (ℎ𝑎
2), accuracy for individual selection (𝑟𝑎̂𝑎), maximum possible 

accuracy for BLUP using also the family mean (𝑟𝑎̂𝑎 𝑚𝑎𝑥), classification of magnitudes of individual additive 
heritability (ℎ𝑎

2  classification) and classification of accuracy magnitudes for selection of individuals 
(𝑟𝑎̂𝑎 classification). 

𝒉𝒂
𝟐 𝒓𝒂̂𝒂 𝒓𝒂̂𝒂 𝒎𝒂𝒙 𝒉𝒂

𝟐 classification 𝒓𝒂̂𝒂 classification 

0.01 0.10 0.51 
Low 

0.01 ≤ ℎ𝑎
2 ≤ 0.15 

Low 
0.10 ≤ 𝑟𝑎̂𝑎 ≤ 0.40 

0.10 0.32 0.55 

0.15 0.39 0.58 

0.20 0.45 0.61 
Moderate 

0.15 < ℎ𝑎
2 < 0.50 

Moderate 
0.40 < 𝑟𝑎̂𝑎 < 0.70 

0.30 0.55 0.66 

0.40 0.63 0.71 

0.50 0.71 0.76 
High 

0.50 ≤ ℎ𝑎
2 < 0.80 

High 
0.70 ≤ 𝑟𝑎̂𝑎 < 0.90 

0.60 0.77 0.80 

0.70 0.84 0.85 

0.80 0.89 0.90 Very high 
ℎ𝑎

2 ≥  0.80 
Very high 

𝑟𝑎̂𝑎 ≥  0.90 0.90 0.95 0.95 

Source: (Resende, 1997). 

 

It is verified that, with ℎ𝑎
2 > 0.50, there is 

practically no advantage in the use of family 

information and the selection based only on 

individual information already provides a high 

accuracy (𝑟𝑎̂𝑎 > 0.70). Even for traits with low 

additive heritability, the use of information from 

relatives (more information) allows to increase 

the selective accuracy of the class from low to 

moderate. This fact highlights the importance of 

working with more elaborate selection methods. 

Classification of magnitudes of 
repeatability estimates 

In general, the classification of the 

repeatability coefficients in terms of magnitude 

can be performed by comparing the permanent 

phenotypic gain to be obtained considering one 

measurement (𝐺1) with that to be obtained 

assuming m measurements (𝐺𝑚), by the ratio 

𝐺1 𝐺𝑚 = {[1 + (𝑚 − 1)𝜌] 𝑚⁄ }1 2⁄⁄ . 

Considering the 𝑚 = 2 for 𝐺𝑚, the 

classifications for repeatability are as follows: 

high repeatability: 𝐺1 𝐺𝑚 ≥ 0.90⁄ →𝜌 ≥ 0.60; 

medium repeatability: 0.80 < 𝐺1 𝐺𝑚⁄ <
0.90→0.30 <  < 0.60;and low repeatability: 

𝐺1 𝐺𝑚⁄ ≤ 0.80→ ≤  0.30. 

Classification of the magnitudes of the 
genetic correlation coefficients 

A classification of the magnitudes of the 

genetic correlation coefficients can be obtained 

by taking thirds of the values of the parametric 
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space that extends from -1 to 1. Thus, we have 

the following classification: 

Positive 
scale values 

Negative 
scale values 

Classification 

0.0 to 0.33 0.0 to 0.33 Low 

0.34 to 0.66 0.34 to 0.66 Medium 

0.67 to 1.0 0.67 to 1.0 High 

Correlations must be interpreted not only 

based on their significance, but mainly based on 

their magnitudes. The classes shown above are 

valid for genetic and phenotypic correlations 

between traits and also for correlation of the 

same variable across environments. In the latter 

case, the low, medium and high classes for 

correlations should also be interpreted as 

genotype × environment interaction high, 

medium and low, respectively. The low-class 

correlation denotes high interaction and, in 

addition, that the interaction is of the complex 

type (arising from the lack of correlation between 

genotypes across environments). 

In the bivariate context, the correlation 

coefficient between orders, or Spearman 

correlation between two variables, is not strongly 

influenced by extreme pairs. Thus, it is robust in 

relation to Pearson’s linear correlation coefficient. 

A large difference in magnitude between these two 

types of correlation coefficient can reveal the 

presence of extreme pairs of variables. However, a 

high Spearman correlation does not necessarily 

indicate that the relationship between two variables 

is linear. Spearman’s correlation between two 

variables, markedly higher than Pearson’s 

correlation, may indicate a non-linear relationship 

between these variables. As an example, two 

variables X and Y, where Y is given by 𝑌 = 𝑋2, will 

present a Pearson correlation value close to 0, but a 

Spearman correlation value equal to 1. 

Coefficient of variation 

In experimental statistics, the genetic 

variability inherent to the experiment can be 

measured by the coefficient of genetic variation 

(𝐶𝑉𝑔), which informs about the possibility of 

improvement and the evolution of the trait in the 

population. This measure is scaled and, therefore, 

comparable between variables. The coefficient of 

phenotypic variation, when greater than 100% 

indicate the presence of outliers. 

Weights in selection index 

For constructing selection index, 

phenotypic traits should be heritable (ℎ2 > 0.10), 

adequately scaled and scored and correlated with 

the breeding objective. Traits can be combined in 

super-variables or in selection indexes describing 

the breeding objective. An efficient alternative for 

calculating the economic weights 𝑤𝑖 refers to the 

use of genetic correlations between each trait i and 

the objective trait j of the improvement (𝑟𝑔𝑖𝑗
). In 

this case, 𝑤𝑖 is given by  

𝑤𝑖 = 𝑟𝑔𝑖𝑗
∑ 𝑟𝑔𝑖𝑗

𝑛
𝑖=1⁄ , 

that is, it is equivalent to the correlation as a 

proportion of the sum of the correlations 

involving the n variables and the objective trait. 

Genotype x environment 
interaction and genotype correlation 

across environments 

The genotype correlation across 

environments (𝑟𝑔𝑒) can be expressed 

alternatively according to the proportion 𝑃 =

𝜎𝑔𝑒
2 𝜎𝑔

2⁄ , by means of  

𝑟𝑔𝑒 = 𝜎𝑔
2 (𝜎𝑔

2 + 𝑃𝜎𝑔
2) = 1 (1 + 𝑃)⁄⁄ . 

With 𝑃 = 0.5, we have 𝑟𝑔𝑒 = 0.67, which is a 

high value of genetic correlation. 

Thus, it can be inferred that when the ratio 

of the variance of the interaction/genetic variance 

free from interaction is less than 0.5, the 

interaction is not problematic for the breeder, as 

it will lead to a high correlation. When 𝑃 > 0.5, 

the interaction can be problematic for the 

breeder, implying losses of gain with indirect 

selection (selection in one place aiming at gain in 

another). There is also the equality  

𝑃 = 𝜎𝑔𝑒
2 𝜎𝑔

2⁄ = (1 − 𝑟𝑔𝑒) 𝑟𝑔𝑒⁄ , 

where (1 − 𝑟𝑔𝑒) is the lack of correlation. 
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